Extremal Betti Numbers of t-Spread Strongly Stable Ideals

Let <i>K</i> be a field and let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mo>=</mo> <mi>K</mi> <mo>[</mo> <msub> <mi>x</mi> <mn>1</mn> </msub&g...

Full description

Bibliographic Details
Main Authors: Luca Amata, Marilena Crupi
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/8/695
_version_ 1819011503601221632
author Luca Amata
Marilena Crupi
author_facet Luca Amata
Marilena Crupi
author_sort Luca Amata
collection DOAJ
description Let <i>K</i> be a field and let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mo>=</mo> <mi>K</mi> <mo>[</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> be a polynomial ring over <i>K</i>. We analyze the extremal Betti numbers of special squarefree monomial ideals of <i>S</i> known as the <i>t</i>-spread strongly stable ideals, where <i>t</i> is an integer <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8805;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>. A characterization of the extremal Betti numbers of such a class of ideals is given. Moreover, we determine the structure of the <i>t</i>-spread strongly stable ideals with the maximal number of extremal Betti numbers when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>.
first_indexed 2024-12-21T01:29:12Z
format Article
id doaj.art-62cbcbb346ad44c0a053e2041a936828
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-21T01:29:12Z
publishDate 2019-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-62cbcbb346ad44c0a053e2041a9368282022-12-21T19:20:24ZengMDPI AGMathematics2227-73902019-08-017869510.3390/math7080695math7080695Extremal Betti Numbers of t-Spread Strongly Stable IdealsLuca Amata0Marilena Crupi1Department of Mathematics and Computer Sciences, Physics and Earth Sciences, University of Messina Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, ItalyDepartment of Mathematics and Computer Sciences, Physics and Earth Sciences, University of Messina Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, ItalyLet <i>K</i> be a field and let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mo>=</mo> <mi>K</mi> <mo>[</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> be a polynomial ring over <i>K</i>. We analyze the extremal Betti numbers of special squarefree monomial ideals of <i>S</i> known as the <i>t</i>-spread strongly stable ideals, where <i>t</i> is an integer <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8805;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>. A characterization of the extremal Betti numbers of such a class of ideals is given. Moreover, we determine the structure of the <i>t</i>-spread strongly stable ideals with the maximal number of extremal Betti numbers when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/7/8/695graded idealssquarefree monomial idealsminimal graded resolutionsextremal Betti numberst-spread monomial ideals
spellingShingle Luca Amata
Marilena Crupi
Extremal Betti Numbers of t-Spread Strongly Stable Ideals
Mathematics
graded ideals
squarefree monomial ideals
minimal graded resolutions
extremal Betti numbers
t-spread monomial ideals
title Extremal Betti Numbers of t-Spread Strongly Stable Ideals
title_full Extremal Betti Numbers of t-Spread Strongly Stable Ideals
title_fullStr Extremal Betti Numbers of t-Spread Strongly Stable Ideals
title_full_unstemmed Extremal Betti Numbers of t-Spread Strongly Stable Ideals
title_short Extremal Betti Numbers of t-Spread Strongly Stable Ideals
title_sort extremal betti numbers of t spread strongly stable ideals
topic graded ideals
squarefree monomial ideals
minimal graded resolutions
extremal Betti numbers
t-spread monomial ideals
url https://www.mdpi.com/2227-7390/7/8/695
work_keys_str_mv AT lucaamata extremalbettinumbersoftspreadstronglystableideals
AT marilenacrupi extremalbettinumbersoftspreadstronglystableideals