Numerical Evaluation of a Novel Vertical Drop Airflow System to Mitigate Droplet Transmission in Trains

Owing to the outbreak of COVID-19, researchers are exploring methods to prevent contact and non-contact infections that occur via multiple transmission routes. However, studies on preventing infections caused by droplet transmission in public transportation are insufficient. To prevent the spread of...

Full description

Bibliographic Details
Main Authors: Sungho Yun, Jae-Chul Kim
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/5/829
Description
Summary:Owing to the outbreak of COVID-19, researchers are exploring methods to prevent contact and non-contact infections that occur via multiple transmission routes. However, studies on preventing infections caused by droplet transmission in public transportation are insufficient. To prevent the spread of infectious diseases, a new ventilation system in railway vehicles must be developed. In this study, a novel vertical drop airflow (VDA) system is proposed to mitigate the effect of droplet transmission in a high-speed train cabin. The droplet transmission route and droplet fate are investigated using three-dimensional fluid dynamics simulations, performed employing the Eulerian–Lagrangian model. Additionally, a porous model is adopted to simulate the effect of close-fitting masks. The results indicate that 120 s after coughing, the decrease in the droplet number in the VDA system is 72.1% of that observed in the conventional system. Moreover, the VDA system effectively suppresses droplet transmission because the maximum droplet travel distances of the VDA systems are 49.9% to 67.0% of those of the conventional systems. Furthermore, the effect of reducing droplet transmission by wearing a close-fitting mask is confirmed in all systems. Thus, the decrease in both droplet number and droplet transmission area in train cabins validate that the proposed VDA system has an effective airflow design to prevent droplet infection.
ISSN:2073-4433