Stabilizing black cotton soil using iron ore waste

Using discarded iron ore powder to settle subgrade soil will improve the characteristics of black cotton soil. The soil's engineering properties are analysed using various tests, such as specific gravity, grain size analysis, Atterberg's limits, compaction properties, and unconfined compre...

Full description

Bibliographic Details
Main Authors: Kumar P. Ashween, Raffi V. Abdul, Preethi M., Sastri M.V.S.S.
Format: Article
Language:English
Published: EDP Sciences 2023-01-01
Series:E3S Web of Conferences
Subjects:
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/42/e3sconf_icstce2023_04028.pdf
Description
Summary:Using discarded iron ore powder to settle subgrade soil will improve the characteristics of black cotton soil. The soil's engineering properties are analysed using various tests, such as specific gravity, grain size analysis, Atterberg's limits, compaction properties, and unconfined compressive strength. These tests examine the classification of the soil, the optimum moisture content (OMC), the maximum dry density (MDD), the strength of the soil, and other variables. The black cotton soil (BCS) was taken from Ghatkesar Mandal in the Malkalgiri-Medchal region, while the iron ore was procured from a small-scale local enterprise. For this, a clay soil sample with a medium degree of plasticity was combined with iron ore powder in concentrations ranging from 0% to 20% with a 5% increment. The data obtained demonstrated a steady rise in specific gravity with the addition of scrap iron ore and raised from 2.54 to 2.81 when it comes to unconfined compressive strength. Adding more iron ore increased the UCS to stabilize the soil from 149.31kPa to 232.22kPa. The OMC increased from 16% to 12.5%, MDD from 1.86gm/cc to 1.98gm/cc and Plasticity Index from 42.8% to 28.08%. For all mixes, the soil is well-graded. The results demonstrate that iron ore waste can successfully stabilize the soil.
ISSN:2267-1242