Neural stem cells traffic functional mitochondria via extracellular vesicles.

Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mec...

Full description

Bibliographic Details
Main Authors: Luca Peruzzotti-Jametti, Joshua D Bernstock, Cory M Willis, Giulia Manferrari, Rebecca Rogall, Erika Fernandez-Vizarra, James C Williamson, Alice Braga, Aletta van den Bosch, Tommaso Leonardi, Grzegorz Krzak, Ágnes Kittel, Cristiane Benincá, Nunzio Vicario, Sisareuth Tan, Carlos Bastos, Iacopo Bicci, Nunzio Iraci, Jayden A Smith, Ben Peacock, Karin H Muller, Paul J Lehner, Edit Iren Buzas, Nuno Faria, Massimo Zeviani, Christian Frezza, Alain Brisson, Nicholas J Matheson, Carlo Viscomi, Stefano Pluchino
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-04-01
Series:PLoS Biology
Online Access:https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3001166&type=printable
_version_ 1826554811642806272
author Luca Peruzzotti-Jametti
Joshua D Bernstock
Cory M Willis
Giulia Manferrari
Rebecca Rogall
Erika Fernandez-Vizarra
James C Williamson
Alice Braga
Aletta van den Bosch
Tommaso Leonardi
Grzegorz Krzak
Ágnes Kittel
Cristiane Benincá
Nunzio Vicario
Sisareuth Tan
Carlos Bastos
Iacopo Bicci
Nunzio Iraci
Jayden A Smith
Ben Peacock
Karin H Muller
Paul J Lehner
Edit Iren Buzas
Nuno Faria
Massimo Zeviani
Christian Frezza
Alain Brisson
Nicholas J Matheson
Carlo Viscomi
Stefano Pluchino
author_facet Luca Peruzzotti-Jametti
Joshua D Bernstock
Cory M Willis
Giulia Manferrari
Rebecca Rogall
Erika Fernandez-Vizarra
James C Williamson
Alice Braga
Aletta van den Bosch
Tommaso Leonardi
Grzegorz Krzak
Ágnes Kittel
Cristiane Benincá
Nunzio Vicario
Sisareuth Tan
Carlos Bastos
Iacopo Bicci
Nunzio Iraci
Jayden A Smith
Ben Peacock
Karin H Muller
Paul J Lehner
Edit Iren Buzas
Nuno Faria
Massimo Zeviani
Christian Frezza
Alain Brisson
Nicholas J Matheson
Carlo Viscomi
Stefano Pluchino
author_sort Luca Peruzzotti-Jametti
collection DOAJ
description Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
first_indexed 2024-04-09T23:42:41Z
format Article
id doaj.art-62e32062ab904101a16fc0e8ef20d45c
institution Directory Open Access Journal
issn 1544-9173
1545-7885
language English
last_indexed 2025-03-14T07:46:51Z
publishDate 2021-04-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Biology
spelling doaj.art-62e32062ab904101a16fc0e8ef20d45c2025-03-03T05:30:52ZengPublic Library of Science (PLoS)PLoS Biology1544-91731545-78852021-04-01194e300116610.1371/journal.pbio.3001166Neural stem cells traffic functional mitochondria via extracellular vesicles.Luca Peruzzotti-JamettiJoshua D BernstockCory M WillisGiulia ManferrariRebecca RogallErika Fernandez-VizarraJames C WilliamsonAlice BragaAletta van den BoschTommaso LeonardiGrzegorz KrzakÁgnes KittelCristiane BenincáNunzio VicarioSisareuth TanCarlos BastosIacopo BicciNunzio IraciJayden A SmithBen PeacockKarin H MullerPaul J LehnerEdit Iren BuzasNuno FariaMassimo ZevianiChristian FrezzaAlain BrissonNicholas J MathesonCarlo ViscomiStefano PluchinoNeural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3001166&type=printable
spellingShingle Luca Peruzzotti-Jametti
Joshua D Bernstock
Cory M Willis
Giulia Manferrari
Rebecca Rogall
Erika Fernandez-Vizarra
James C Williamson
Alice Braga
Aletta van den Bosch
Tommaso Leonardi
Grzegorz Krzak
Ágnes Kittel
Cristiane Benincá
Nunzio Vicario
Sisareuth Tan
Carlos Bastos
Iacopo Bicci
Nunzio Iraci
Jayden A Smith
Ben Peacock
Karin H Muller
Paul J Lehner
Edit Iren Buzas
Nuno Faria
Massimo Zeviani
Christian Frezza
Alain Brisson
Nicholas J Matheson
Carlo Viscomi
Stefano Pluchino
Neural stem cells traffic functional mitochondria via extracellular vesicles.
PLoS Biology
title Neural stem cells traffic functional mitochondria via extracellular vesicles.
title_full Neural stem cells traffic functional mitochondria via extracellular vesicles.
title_fullStr Neural stem cells traffic functional mitochondria via extracellular vesicles.
title_full_unstemmed Neural stem cells traffic functional mitochondria via extracellular vesicles.
title_short Neural stem cells traffic functional mitochondria via extracellular vesicles.
title_sort neural stem cells traffic functional mitochondria via extracellular vesicles
url https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3001166&type=printable
work_keys_str_mv AT lucaperuzzottijametti neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT joshuadbernstock neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT corymwillis neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT giuliamanferrari neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT rebeccarogall neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT erikafernandezvizarra neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT jamescwilliamson neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT alicebraga neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT alettavandenbosch neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT tommasoleonardi neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT grzegorzkrzak neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT agneskittel neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT cristianebeninca neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT nunziovicario neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT sisareuthtan neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT carlosbastos neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT iacopobicci neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT nunzioiraci neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT jaydenasmith neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT benpeacock neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT karinhmuller neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT pauljlehner neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT editirenbuzas neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT nunofaria neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT massimozeviani neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT christianfrezza neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT alainbrisson neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT nicholasjmatheson neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT carloviscomi neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT stefanopluchino neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles