Kullback–Leibler Divergence of a Freely Cooling Granular Gas

Finding the proper entropy-like Lyapunov functional associated with the inelastic Boltzmann equation for an isolated freely cooling granular gas is a still unsolved challenge. The original <i>H</i>-theorem hypotheses do not fit here and the <i>H</i>-functional presents some a...

Full description

Bibliographic Details
Main Authors: Alberto Megías, Andrés Santos
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/11/1308
_version_ 1797547692409225216
author Alberto Megías
Andrés Santos
author_facet Alberto Megías
Andrés Santos
author_sort Alberto Megías
collection DOAJ
description Finding the proper entropy-like Lyapunov functional associated with the inelastic Boltzmann equation for an isolated freely cooling granular gas is a still unsolved challenge. The original <i>H</i>-theorem hypotheses do not fit here and the <i>H</i>-functional presents some additional measure problems that are solved by the Kullback–Leibler divergence (KLD) of a reference velocity distribution function from the actual distribution. The right choice of the reference distribution in the KLD is crucial for the latter to qualify or not as a Lyapunov functional, the asymptotic “homogeneous cooling state” (HCS) distribution being a potential candidate. Due to the lack of a formal proof far from the quasielastic limit, the aim of this work is to support this conjecture aided by molecular dynamics simulations of inelastic hard disks and spheres in a wide range of values for the coefficient of restitution (<inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>) and for different initial conditions. Our results reject the Maxwellian distribution as a possible reference, whereas they reinforce the HCS one. Moreover, the KLD is used to measure the amount of information lost on using the former rather than the latter, revealing a non-monotonic dependence with <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>.
first_indexed 2024-03-10T14:47:43Z
format Article
id doaj.art-62e75e7a3e624b7faf8036245eb81069
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T14:47:43Z
publishDate 2020-11-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-62e75e7a3e624b7faf8036245eb810692023-11-20T21:15:11ZengMDPI AGEntropy1099-43002020-11-012211130810.3390/e22111308Kullback–Leibler Divergence of a Freely Cooling Granular GasAlberto Megías0Andrés Santos1Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, SpainDepartamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, SpainFinding the proper entropy-like Lyapunov functional associated with the inelastic Boltzmann equation for an isolated freely cooling granular gas is a still unsolved challenge. The original <i>H</i>-theorem hypotheses do not fit here and the <i>H</i>-functional presents some additional measure problems that are solved by the Kullback–Leibler divergence (KLD) of a reference velocity distribution function from the actual distribution. The right choice of the reference distribution in the KLD is crucial for the latter to qualify or not as a Lyapunov functional, the asymptotic “homogeneous cooling state” (HCS) distribution being a potential candidate. Due to the lack of a formal proof far from the quasielastic limit, the aim of this work is to support this conjecture aided by molecular dynamics simulations of inelastic hard disks and spheres in a wide range of values for the coefficient of restitution (<inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>) and for different initial conditions. Our results reject the Maxwellian distribution as a possible reference, whereas they reinforce the HCS one. Moreover, the KLD is used to measure the amount of information lost on using the former rather than the latter, revealing a non-monotonic dependence with <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>.https://www.mdpi.com/1099-4300/22/11/1308Kullback–Leibler divergencegranular gaseskinetic theorymolecular dynamics
spellingShingle Alberto Megías
Andrés Santos
Kullback–Leibler Divergence of a Freely Cooling Granular Gas
Entropy
Kullback–Leibler divergence
granular gases
kinetic theory
molecular dynamics
title Kullback–Leibler Divergence of a Freely Cooling Granular Gas
title_full Kullback–Leibler Divergence of a Freely Cooling Granular Gas
title_fullStr Kullback–Leibler Divergence of a Freely Cooling Granular Gas
title_full_unstemmed Kullback–Leibler Divergence of a Freely Cooling Granular Gas
title_short Kullback–Leibler Divergence of a Freely Cooling Granular Gas
title_sort kullback leibler divergence of a freely cooling granular gas
topic Kullback–Leibler divergence
granular gases
kinetic theory
molecular dynamics
url https://www.mdpi.com/1099-4300/22/11/1308
work_keys_str_mv AT albertomegias kullbackleiblerdivergenceofafreelycoolinggranulargas
AT andressantos kullbackleiblerdivergenceofafreelycoolinggranulargas