Investigation of the Robotized Incremental Metal-Sheet Forming Process with Ultrasonic Excitation

During the single-point incremental forming (SPIF) process, a sheet is formed by a locally acting stress field on the surface consisting of a normal and shear component that is strongly affected by friction of the dragging forming tool. SPIF is usually performed under well-lubricated conditions in o...

Full description

Bibliographic Details
Main Authors: Vytautas Ostasevicius, Agne Paulauskaite-Taraseviciene, Ieva Paleviciute, Vytautas Jurenas, Paulius Griskevicius, Darius Eidukynas, Laura Kizauskiene
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/3/1024
Description
Summary:During the single-point incremental forming (SPIF) process, a sheet is formed by a locally acting stress field on the surface consisting of a normal and shear component that is strongly affected by friction of the dragging forming tool. SPIF is usually performed under well-lubricated conditions in order to reduce friction. Instead of lubricating the contact surface of the sheet metal, we propose an innovative, environmentally friendly method to reduce the coefficient of friction by ultrasonic excitation of the metal sheet. By evaluating the tool-workpiece interaction process as non-linear due to large deformations in the metal sheet, the finite element method (FEM) allows for a virtual evaluation of the deformation and piercing parameters of the SPIF process in order to determine destructive loads.
ISSN:1996-1944