Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH

<p>We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the boreal zone. The parameter posterior distributions were generated by the adaptive population importance sampler (APIS); then the optimal v...

Full description

Bibliographic Details
Main Authors: J. Mäkelä, J. Knauer, M. Aurela, A. Black, M. Heimann, H. Kobayashi, A. Lohila, I. Mammarella, H. Margolis, T. Markkanen, J. Susiluoto, T. Thum, T. Viskari, S. Zaehle, T. Aalto
Format: Article
Language:English
Published: Copernicus Publications 2019-09-01
Series:Geoscientific Model Development
Online Access:https://www.geosci-model-dev.net/12/4075/2019/gmd-12-4075-2019.pdf
_version_ 1828482449139564544
author J. Mäkelä
J. Knauer
M. Aurela
A. Black
M. Heimann
H. Kobayashi
A. Lohila
A. Lohila
I. Mammarella
H. Margolis
T. Markkanen
J. Susiluoto
J. Susiluoto
T. Thum
T. Viskari
S. Zaehle
T. Aalto
author_facet J. Mäkelä
J. Knauer
M. Aurela
A. Black
M. Heimann
H. Kobayashi
A. Lohila
A. Lohila
I. Mammarella
H. Margolis
T. Markkanen
J. Susiluoto
J. Susiluoto
T. Thum
T. Viskari
S. Zaehle
T. Aalto
author_sort J. Mäkelä
collection DOAJ
description <p>We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the boreal zone. The parameter posterior distributions were generated by the adaptive population importance sampler (APIS); then the optimal values were estimated by a simple stochastic optimisation algorithm. The model was constrained with in situ observations of evapotranspiration (ET) and gross primary production (GPP). We identified the key parameters in the calibration process. These parameters control the soil moisture stress function and the overall rate of carbon fixation.</p> <p>The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity in spring. This modification enabled the model to correctly reproduce the springtime increase in GPP for all conifer sites used in this study. Overall, the calibration and model modifications improved the coefficient of determination and the model bias for GPP with all stomatal conductance formulations. However, only the coefficient of determination was clearly improved for ET. The optimisation resulted in best performance by the Bethy, Ball–Berry, and the Friend and Kiang stomatal conductance models.</p> <p>We also optimised the model during a drought event at a Finnish Scots pine forest site. This optimisation improved the model behaviour but resulted in significant changes to the parameter values except for the unified stomatal optimisation model (USO). Interestingly, the USO demonstrated the best performance during this event.</p>
first_indexed 2024-12-11T08:14:44Z
format Article
id doaj.art-62f11bf2acd84306a4e3a4e8e1b9e13a
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-12-11T08:14:44Z
publishDate 2019-09-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-62f11bf2acd84306a4e3a4e8e1b9e13a2022-12-22T01:14:47ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032019-09-01124075409810.5194/gmd-12-4075-2019Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACHJ. Mäkelä0J. Knauer1M. Aurela2A. Black3M. Heimann4H. Kobayashi5A. Lohila6A. Lohila7I. Mammarella8H. Margolis9T. Markkanen10J. Susiluoto11J. Susiluoto12T. Thum13T. Viskari14S. Zaehle15T. Aalto16Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandMax Planck Institute for Biogeochemistry, 07745 Jena, GermanyFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandUniversity of British Columbia, Vancouver, CanadaMax Planck Institute for Biogeochemistry, 07745 Jena, GermanyInstitute of Arctic Climate and Environment Change Research, Japan Agency for Marine-Earth Science and Technology, Yokohama, JapanFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandInstitute for Atmospheric and Earth System Research/Physics, P.O. Box 48, Faculty of Science, 00014 University of Helsinki, Helsinki, FinlandInstitute for Atmospheric and Earth System Research/Physics, P.O. Box 48, Faculty of Science, 00014 University of Helsinki, Helsinki, FinlandDepartment of Forest Sciences, Laval University, Québec city, CanadaFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandSchool of Engineering Science, Lappeenranta-Lahti University of Technology, P.O. Box 20, 53851 Lappeenranta, FinlandMax Planck Institute for Biogeochemistry, 07745 Jena, GermanyFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandMax Planck Institute for Biogeochemistry, 07745 Jena, GermanyFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland<p>We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the boreal zone. The parameter posterior distributions were generated by the adaptive population importance sampler (APIS); then the optimal values were estimated by a simple stochastic optimisation algorithm. The model was constrained with in situ observations of evapotranspiration (ET) and gross primary production (GPP). We identified the key parameters in the calibration process. These parameters control the soil moisture stress function and the overall rate of carbon fixation.</p> <p>The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity in spring. This modification enabled the model to correctly reproduce the springtime increase in GPP for all conifer sites used in this study. Overall, the calibration and model modifications improved the coefficient of determination and the model bias for GPP with all stomatal conductance formulations. However, only the coefficient of determination was clearly improved for ET. The optimisation resulted in best performance by the Bethy, Ball–Berry, and the Friend and Kiang stomatal conductance models.</p> <p>We also optimised the model during a drought event at a Finnish Scots pine forest site. This optimisation improved the model behaviour but resulted in significant changes to the parameter values except for the unified stomatal optimisation model (USO). Interestingly, the USO demonstrated the best performance during this event.</p>https://www.geosci-model-dev.net/12/4075/2019/gmd-12-4075-2019.pdf
spellingShingle J. Mäkelä
J. Knauer
M. Aurela
A. Black
M. Heimann
H. Kobayashi
A. Lohila
A. Lohila
I. Mammarella
H. Margolis
T. Markkanen
J. Susiluoto
J. Susiluoto
T. Thum
T. Viskari
S. Zaehle
T. Aalto
Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
Geoscientific Model Development
title Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
title_full Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
title_fullStr Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
title_full_unstemmed Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
title_short Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
title_sort parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model jsbach
url https://www.geosci-model-dev.net/12/4075/2019/gmd-12-4075-2019.pdf
work_keys_str_mv AT jmakela parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT jknauer parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT maurela parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT ablack parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT mheimann parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT hkobayashi parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT alohila parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT alohila parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT imammarella parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT hmargolis parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT tmarkkanen parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT jsusiluoto parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT jsusiluoto parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT tthum parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT tviskari parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT szaehle parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach
AT taalto parametercalibrationandstomatalconductanceformulationcomparisonforborealforestswithadaptivepopulationimportancesamplerinthelandsurfacemodeljsbach