Bessel Beam Illumination Reduces Random and Systematic Errors in Quantitative Functional Studies Using Light-Sheet Microscopy

Light-sheet microscopy (LSM), in combination with intrinsically transparent zebrafish larvae, is a method of choice to observe brain function with high frame rates at cellular resolution. Inherently to LSM, however, residual opaque objects cause stripe artifacts, which obscure features of interest a...

Full description

Bibliographic Details
Main Authors: M. Caroline Müllenbroich, Lapo Turrini, Ludovico Silvestri, Tommaso Alterini, Ali Gheisari, Natascia Tiso, Francesco Vanzi, Leonardo Sacconi, Francesco S. Pavone
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-09-01
Series:Frontiers in Cellular Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fncel.2018.00315/full
_version_ 1811319035033288704
author M. Caroline Müllenbroich
M. Caroline Müllenbroich
Lapo Turrini
Ludovico Silvestri
Ludovico Silvestri
Tommaso Alterini
Ali Gheisari
Natascia Tiso
Francesco Vanzi
Francesco Vanzi
Leonardo Sacconi
Leonardo Sacconi
Francesco S. Pavone
Francesco S. Pavone
Francesco S. Pavone
author_facet M. Caroline Müllenbroich
M. Caroline Müllenbroich
Lapo Turrini
Ludovico Silvestri
Ludovico Silvestri
Tommaso Alterini
Ali Gheisari
Natascia Tiso
Francesco Vanzi
Francesco Vanzi
Leonardo Sacconi
Leonardo Sacconi
Francesco S. Pavone
Francesco S. Pavone
Francesco S. Pavone
author_sort M. Caroline Müllenbroich
collection DOAJ
description Light-sheet microscopy (LSM), in combination with intrinsically transparent zebrafish larvae, is a method of choice to observe brain function with high frame rates at cellular resolution. Inherently to LSM, however, residual opaque objects cause stripe artifacts, which obscure features of interest and, during functional imaging, modulate fluorescence variations related to neuronal activity. Here, we report how Bessel beams reduce streaking artifacts and produce high-fidelity quantitative data demonstrating a fivefold increase in sensitivity to calcium transients and a 20-fold increase in accuracy in the detection of activity correlations in functional imaging. Furthermore, using principal component analysis, we show that measurements obtained with Bessel beams are clean enough to reveal in one-shot experiments correlations that can not be averaged over trials after stimuli as is the case when studying spontaneous activity. Our results not only demonstrate the contamination of data by systematic and random errors through conventional Gaussian illumination and but,furthermore, quantify the increase in fidelity of such data when using Bessel beams.
first_indexed 2024-04-13T12:35:22Z
format Article
id doaj.art-62f1a6b5464749bea8828570e1d57b2d
institution Directory Open Access Journal
issn 1662-5102
language English
last_indexed 2024-04-13T12:35:22Z
publishDate 2018-09-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Cellular Neuroscience
spelling doaj.art-62f1a6b5464749bea8828570e1d57b2d2022-12-22T02:46:40ZengFrontiers Media S.A.Frontiers in Cellular Neuroscience1662-51022018-09-011210.3389/fncel.2018.00315388732Bessel Beam Illumination Reduces Random and Systematic Errors in Quantitative Functional Studies Using Light-Sheet MicroscopyM. Caroline Müllenbroich0M. Caroline Müllenbroich1Lapo Turrini2Ludovico Silvestri3Ludovico Silvestri4Tommaso Alterini5Ali Gheisari6Natascia Tiso7Francesco Vanzi8Francesco Vanzi9Leonardo Sacconi10Leonardo Sacconi11Francesco S. Pavone12Francesco S. Pavone13Francesco S. Pavone14National Institute of Optics, National Research Council, Sesto Fiorentino, ItalyEuropean Laboratory for Non-linear Spectroscopy, LENS, Sesto Fiorentino, ItalyEuropean Laboratory for Non-linear Spectroscopy, LENS, Sesto Fiorentino, ItalyNational Institute of Optics, National Research Council, Sesto Fiorentino, ItalyEuropean Laboratory for Non-linear Spectroscopy, LENS, Sesto Fiorentino, ItalyEuropean Laboratory for Non-linear Spectroscopy, LENS, Sesto Fiorentino, ItalyEuropean Laboratory for Non-linear Spectroscopy, LENS, Sesto Fiorentino, ItalyDepartment of Biology, University of Padova, Padua, ItalyEuropean Laboratory for Non-linear Spectroscopy, LENS, Sesto Fiorentino, ItalyDepartment of Biology, University of Padova, Padua, ItalyNational Institute of Optics, National Research Council, Sesto Fiorentino, ItalyEuropean Laboratory for Non-linear Spectroscopy, LENS, Sesto Fiorentino, ItalyNational Institute of Optics, National Research Council, Sesto Fiorentino, ItalyEuropean Laboratory for Non-linear Spectroscopy, LENS, Sesto Fiorentino, ItalyDepartment of Physics and Astronomy, University of Florence, Sesto Fiorentino, ItalyLight-sheet microscopy (LSM), in combination with intrinsically transparent zebrafish larvae, is a method of choice to observe brain function with high frame rates at cellular resolution. Inherently to LSM, however, residual opaque objects cause stripe artifacts, which obscure features of interest and, during functional imaging, modulate fluorescence variations related to neuronal activity. Here, we report how Bessel beams reduce streaking artifacts and produce high-fidelity quantitative data demonstrating a fivefold increase in sensitivity to calcium transients and a 20-fold increase in accuracy in the detection of activity correlations in functional imaging. Furthermore, using principal component analysis, we show that measurements obtained with Bessel beams are clean enough to reveal in one-shot experiments correlations that can not be averaged over trials after stimuli as is the case when studying spontaneous activity. Our results not only demonstrate the contamination of data by systematic and random errors through conventional Gaussian illumination and but,furthermore, quantify the increase in fidelity of such data when using Bessel beams.https://www.frontiersin.org/article/10.3389/fncel.2018.00315/fullspontaneous activityzebrafishprinciple component analysislight-sheet microscopyfunctional imagingBessel beams
spellingShingle M. Caroline Müllenbroich
M. Caroline Müllenbroich
Lapo Turrini
Ludovico Silvestri
Ludovico Silvestri
Tommaso Alterini
Ali Gheisari
Natascia Tiso
Francesco Vanzi
Francesco Vanzi
Leonardo Sacconi
Leonardo Sacconi
Francesco S. Pavone
Francesco S. Pavone
Francesco S. Pavone
Bessel Beam Illumination Reduces Random and Systematic Errors in Quantitative Functional Studies Using Light-Sheet Microscopy
Frontiers in Cellular Neuroscience
spontaneous activity
zebrafish
principle component analysis
light-sheet microscopy
functional imaging
Bessel beams
title Bessel Beam Illumination Reduces Random and Systematic Errors in Quantitative Functional Studies Using Light-Sheet Microscopy
title_full Bessel Beam Illumination Reduces Random and Systematic Errors in Quantitative Functional Studies Using Light-Sheet Microscopy
title_fullStr Bessel Beam Illumination Reduces Random and Systematic Errors in Quantitative Functional Studies Using Light-Sheet Microscopy
title_full_unstemmed Bessel Beam Illumination Reduces Random and Systematic Errors in Quantitative Functional Studies Using Light-Sheet Microscopy
title_short Bessel Beam Illumination Reduces Random and Systematic Errors in Quantitative Functional Studies Using Light-Sheet Microscopy
title_sort bessel beam illumination reduces random and systematic errors in quantitative functional studies using light sheet microscopy
topic spontaneous activity
zebrafish
principle component analysis
light-sheet microscopy
functional imaging
Bessel beams
url https://www.frontiersin.org/article/10.3389/fncel.2018.00315/full
work_keys_str_mv AT mcarolinemullenbroich besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT mcarolinemullenbroich besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT lapoturrini besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT ludovicosilvestri besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT ludovicosilvestri besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT tommasoalterini besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT aligheisari besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT natasciatiso besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT francescovanzi besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT francescovanzi besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT leonardosacconi besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT leonardosacconi besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT francescospavone besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT francescospavone besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy
AT francescospavone besselbeamilluminationreducesrandomandsystematicerrorsinquantitativefunctionalstudiesusinglightsheetmicroscopy