Estudio de dos estructuras neuronales feedforward para la compresión de imágenes digitales

This paper shows and explains the process implemented for the development of feed- forward neural networks with the aim of compress digital image color. It sets oul sorne traditional techniques and develops tvvo topologies to implement feed forward. During the development of networks, fue items that...

Full description

Bibliographic Details
Main Authors: Andrés Eduardo Gaona Barrera, Néstor Andrés Lugo Currea, Álvaro Fernando Roldán Hernández
Format: Article
Language:English
Published: Universidad de Antioquia 2012-01-01
Series:Revista Facultad de Ingeniería Universidad de Antioquia
Subjects:
Online Access:http://www.redalyc.org/articulo.oa?id=43025803006
_version_ 1797723619218948096
author Andrés Eduardo Gaona Barrera
Néstor Andrés Lugo Currea
Álvaro Fernando Roldán Hernández
author_facet Andrés Eduardo Gaona Barrera
Néstor Andrés Lugo Currea
Álvaro Fernando Roldán Hernández
author_sort Andrés Eduardo Gaona Barrera
collection DOAJ
description This paper shows and explains the process implemented for the development of feed- forward neural networks with the aim of compress digital image color. It sets oul sorne traditional techniques and develops tvvo topologies to implement feed forward. During the development of networks, fue items that are considered: number of layers, number of neurons, image type, size and munber of blocks to train, to optimize performance during final training. It also discusses the standard quality of the image obtained, as peak signal noise relation (PSNR) and cornpression, which typically obtain values above 35dB in terms of PSNR and 2 bits per pixel in gray or 3 bpp color images, with maximum time of 3 seconds for images less than I mega pixel. Finally out some dravvbacks and presents conclusions of this type of compression.
first_indexed 2024-03-12T10:04:21Z
format Article
id doaj.art-62f54f791a3149d491fb5f6061d2f945
institution Directory Open Access Journal
issn 0120-6230
2422-2844
language English
last_indexed 2024-03-12T10:04:21Z
publishDate 2012-01-01
publisher Universidad de Antioquia
record_format Article
series Revista Facultad de Ingeniería Universidad de Antioquia
spelling doaj.art-62f54f791a3149d491fb5f6061d2f9452023-09-02T11:22:41ZengUniversidad de AntioquiaRevista Facultad de Ingeniería Universidad de Antioquia0120-62302422-28442012-01-01658598Estudio de dos estructuras neuronales feedforward para la compresión de imágenes digitalesAndrés Eduardo Gaona BarreraNéstor Andrés Lugo CurreaÁlvaro Fernando Roldán HernándezThis paper shows and explains the process implemented for the development of feed- forward neural networks with the aim of compress digital image color. It sets oul sorne traditional techniques and develops tvvo topologies to implement feed forward. During the development of networks, fue items that are considered: number of layers, number of neurons, image type, size and munber of blocks to train, to optimize performance during final training. It also discusses the standard quality of the image obtained, as peak signal noise relation (PSNR) and cornpression, which typically obtain values above 35dB in terms of PSNR and 2 bits per pixel in gray or 3 bpp color images, with maximum time of 3 seconds for images less than I mega pixel. Finally out some dravvbacks and presents conclusions of this type of compression.http://www.redalyc.org/articulo.oa?id=43025803006compression ratedigital image compressionlossy compressionfeedforward neural networkspeak signal noise relation
spellingShingle Andrés Eduardo Gaona Barrera
Néstor Andrés Lugo Currea
Álvaro Fernando Roldán Hernández
Estudio de dos estructuras neuronales feedforward para la compresión de imágenes digitales
Revista Facultad de Ingeniería Universidad de Antioquia
compression rate
digital image compression
lossy compression
feedforward neural networks
peak signal noise relation
title Estudio de dos estructuras neuronales feedforward para la compresión de imágenes digitales
title_full Estudio de dos estructuras neuronales feedforward para la compresión de imágenes digitales
title_fullStr Estudio de dos estructuras neuronales feedforward para la compresión de imágenes digitales
title_full_unstemmed Estudio de dos estructuras neuronales feedforward para la compresión de imágenes digitales
title_short Estudio de dos estructuras neuronales feedforward para la compresión de imágenes digitales
title_sort estudio de dos estructuras neuronales feedforward para la compresion de imagenes digitales
topic compression rate
digital image compression
lossy compression
feedforward neural networks
peak signal noise relation
url http://www.redalyc.org/articulo.oa?id=43025803006
work_keys_str_mv AT andreseduardogaonabarrera estudiodedosestructurasneuronalesfeedforwardparalacompresiondeimagenesdigitales
AT nestorandreslugocurrea estudiodedosestructurasneuronalesfeedforwardparalacompresiondeimagenesdigitales
AT alvarofernandoroldanhernandez estudiodedosestructurasneuronalesfeedforwardparalacompresiondeimagenesdigitales