Summary: | Abstract We present results of an emission characterization effort, completed as part of a larger intervention trial, of a carbon‐finance‐approved program replacing traditional cookstoves with “rocket”‐style natural draft stoves. The 100 emission tests were conducted across 31 households in control and intervention groups, with repeated tests in most households during preintervention and postintervention periods. While mean fine particulate matter (PM2.5) emission factor for intervention stoves was significantly lower than for traditional stoves in baseline measurements, they were only marginally lower than traditional stoves during follow‐up. Intervention stove PM2.5 emissions had a larger contribution from light‐absorbing (elemental) carbon than traditional stoves. Repeated measurements in control households provide evidence for strong seasonality, likely due to differences in fuel moisture/types, in traditional stove emissions, with important implications for study design. Seasonality observed in control household emission factors (baseline > follow‐up) was in the opposite direction as that observed in indoor PM2.5 concentrations (baseline < follow‐up), highlighting that seasonally varying conditions (e.g., ventilation rates) may modify the link between emissions and exposures. Emission factor differences in paired (pre/post) tests from the same households were similar to differences in the medians of entire groups, suggesting variability is dominated by test‐to‐test variation. Emission reductions from intervention stoves were significantly smaller than laboratory performance would suggest or that are required to strongly reduce exposures. Field emissions assessment like that presented here should be prioritized early in technology assessment and development to provide rigorous estimates of the benefits reasonably expected from interventions with the potential for substantial benefits to human health and the environment.
|