A High Precision Adaptive Back-Stepping Control Method for Morphing Aircraft Based on RBFNN Method
To overcome the uncertainties of the nonlinear model of a morphing aircraft, this paper presents a high-precision adaptive back-stepping control method based on the radial basis function neural network (RBFNN). Firstly, based on the analysis of static and dynamic aerodynamic parameters of the morphi...
Format: | Article |
---|---|
Language: | zho |
Published: |
EDP Sciences
2020-06-01
|
Series: | Xibei Gongye Daxue Xuebao |
Subjects: | |
Online Access: | https://www.jnwpu.org/articles/jnwpu/full_html/2020/03/jnwpu2020383p540/jnwpu2020383p540.html |
Summary: | To overcome the uncertainties of the nonlinear model of a morphing aircraft, this paper presents a high-precision adaptive back-stepping control method based on the radial basis function neural network (RBFNN). Firstly, based on the analysis of static and dynamic aerodynamic parameters of the morphing aircraft, its nonlinear control law is designed by using the conventional back-stepping method. The RBFNN is introduced to approximate online the uncertain terms of the nonlinear control law so as to improve its robustness. The robust term is designed to eliminate the approximation error caused by the RBFNN. Secondly, the tracking differentiator is designed through solving the virtual control variables, thus solving the "differential expansion" problem existing in the traditional back-stepping method. The Lyapunov stability analysis proves that our method can ensure that the tracking error of a closed-loop system converges finally and that its signals are uniformly bounded. Finally, the digital simulation model of the morphing aircraft is established with the MATLAB/Simulink; our method is compared with the conventional back-stepping control method. The simulation results show that our method has a higher control precision and stronger robustness. |
---|---|
ISSN: | 1000-2758 2609-7125 |