Implementasi Teknik Seleksi Fitur Pada Klasifikasi Malware Android Menggunakan Support Vector Machine

<p class="BodyAbstract"><span lang="IN">Android Malware has grown significantly along with the advance of the times and the increasing variety of technique in the development of Android. Machine Learning technique is a method that now we can use in the modeling the pa...

Full description

Bibliographic Details
Main Authors: Hendra Saputra, Setio Basuki, Mahar Faiqurahman
Format: Article
Language:English
Published: University of Darussalam Gontor 2018-05-01
Series:Fountain of Informatics Journal
Subjects:
Online Access:https://ejournal.unida.gontor.ac.id/index.php/FIJ/article/view/1875
_version_ 1797944623114485760
author Hendra Saputra
Setio Basuki
Mahar Faiqurahman
author_facet Hendra Saputra
Setio Basuki
Mahar Faiqurahman
author_sort Hendra Saputra
collection DOAJ
description <p class="BodyAbstract"><span lang="IN">Android Malware has grown significantly along with the advance of the times and the increasing variety of technique in the development of Android. Machine Learning technique is a method that now we can use in the modeling the pattern of a static and dynamic feature of Android Malware. In the level of accuracy of the Malware type classification, the researcher connect between the application feature with the feature required by each type of Malware category. The category of malware used is a type of Malware that many circulating today, to classify the type of Malware in this study used Support Vector Machine (SVM). The SVM type will be used is class SVM one against one using the RBF Kernel. The feature will be used in this classification are the Permission and Broadcast Receiver.  To improve the accuracy of the classification result in this study used Feature Selection method. Selection of feature used is Correlation-based Feature Selection (CFS), Gain Ratio (GR) and Chi-Square (CHI). A result from Feature Selection will be evaluated together with result that not use Feature Selection. Accuracy Classification Feature Selection CFS result accuracy of 90.83%, GR and CHI of 91.25% and data that not use Feature Selection of 91.67%. The result of testing indicates that permission and broadcast receiver can be used in classifying type of Malware, but the Feature Selection method that used have accuracy is a little below the data that are not using Feature Selection.</span></p>
first_indexed 2024-04-10T20:41:28Z
format Article
id doaj.art-63100c13405d4987aa226ef9e815304c
institution Directory Open Access Journal
issn 2541-4313
2548-5113
language English
last_indexed 2024-04-10T20:41:28Z
publishDate 2018-05-01
publisher University of Darussalam Gontor
record_format Article
series Fountain of Informatics Journal
spelling doaj.art-63100c13405d4987aa226ef9e815304c2023-01-24T18:21:16ZengUniversity of Darussalam GontorFountain of Informatics Journal2541-43132548-51132018-05-0131121810.21111/fij.v3i1.18751102Implementasi Teknik Seleksi Fitur Pada Klasifikasi Malware Android Menggunakan Support Vector MachineHendra Saputra0Setio Basuki1Mahar Faiqurahman2Universitas Muhammadiyah MalangUniversitas Muhammadiyah MalangUniversitas Muhammadiyah Malang<p class="BodyAbstract"><span lang="IN">Android Malware has grown significantly along with the advance of the times and the increasing variety of technique in the development of Android. Machine Learning technique is a method that now we can use in the modeling the pattern of a static and dynamic feature of Android Malware. In the level of accuracy of the Malware type classification, the researcher connect between the application feature with the feature required by each type of Malware category. The category of malware used is a type of Malware that many circulating today, to classify the type of Malware in this study used Support Vector Machine (SVM). The SVM type will be used is class SVM one against one using the RBF Kernel. The feature will be used in this classification are the Permission and Broadcast Receiver.  To improve the accuracy of the classification result in this study used Feature Selection method. Selection of feature used is Correlation-based Feature Selection (CFS), Gain Ratio (GR) and Chi-Square (CHI). A result from Feature Selection will be evaluated together with result that not use Feature Selection. Accuracy Classification Feature Selection CFS result accuracy of 90.83%, GR and CHI of 91.25% and data that not use Feature Selection of 91.67%. The result of testing indicates that permission and broadcast receiver can be used in classifying type of Malware, but the Feature Selection method that used have accuracy is a little below the data that are not using Feature Selection.</span></p>https://ejournal.unida.gontor.ac.id/index.php/FIJ/article/view/1875classification android malware, feature selection, svm and multi class svm one against one
spellingShingle Hendra Saputra
Setio Basuki
Mahar Faiqurahman
Implementasi Teknik Seleksi Fitur Pada Klasifikasi Malware Android Menggunakan Support Vector Machine
Fountain of Informatics Journal
classification android malware, feature selection, svm and multi class svm one against one
title Implementasi Teknik Seleksi Fitur Pada Klasifikasi Malware Android Menggunakan Support Vector Machine
title_full Implementasi Teknik Seleksi Fitur Pada Klasifikasi Malware Android Menggunakan Support Vector Machine
title_fullStr Implementasi Teknik Seleksi Fitur Pada Klasifikasi Malware Android Menggunakan Support Vector Machine
title_full_unstemmed Implementasi Teknik Seleksi Fitur Pada Klasifikasi Malware Android Menggunakan Support Vector Machine
title_short Implementasi Teknik Seleksi Fitur Pada Klasifikasi Malware Android Menggunakan Support Vector Machine
title_sort implementasi teknik seleksi fitur pada klasifikasi malware android menggunakan support vector machine
topic classification android malware, feature selection, svm and multi class svm one against one
url https://ejournal.unida.gontor.ac.id/index.php/FIJ/article/view/1875
work_keys_str_mv AT hendrasaputra implementasiteknikseleksifiturpadaklasifikasimalwareandroidmenggunakansupportvectormachine
AT setiobasuki implementasiteknikseleksifiturpadaklasifikasimalwareandroidmenggunakansupportvectormachine
AT maharfaiqurahman implementasiteknikseleksifiturpadaklasifikasimalwareandroidmenggunakansupportvectormachine