Effects of graded levels of dietary squalene supplementation on the growth performance, plasma biochemical parameters, antioxidant capacity, and meat quality in broiler chickens

This study was conducted to evaluate the effects of dietary squalene supplementation on the growth performance, plasma biochemical indices, antioxidant status, and meat quality in broilers. Two hundred and forty 0-day-old male chicks were allocated into 5 groups of 6 replicates and were fed a basal...

Full description

Bibliographic Details
Main Authors: Yueping Chen, Yunfeng Gu, Haoran Zhao, Hao Zhang, Yanmin Zhou
Format: Article
Language:English
Published: Elsevier 2020-11-01
Series:Poultry Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0032579120305812
Description
Summary:This study was conducted to evaluate the effects of dietary squalene supplementation on the growth performance, plasma biochemical indices, antioxidant status, and meat quality in broilers. Two hundred and forty 0-day-old male chicks were allocated into 5 groups of 6 replicates and were fed a basal diet supplemented with 0 (Control group), 250, 500, 1,000, or 2,000 mg/kg squalene for 42 d. Dietary squalene supplementation linearly increased weight gain and feed efficiency of broilers during the grower and overall periods (P < 0.05). Squalene linearly decreased 21-d malondialdehyde (MDA) level and 42-d glutathione peroxidase (GSH-Px) activity, and both linearly and quadratically decreased 42-d MDA level in plasma (P < 0.05). In contrast, squalene linearly increased plasma reduced form of glutathione (GSH) level on 21 and 42 d and superoxide dismutase activity on 42 d (P < 0.05). Squalene supplementation linearly decreased 21-d MDA accumulation but linearly increased GSH level on 21 d and 42 d and both linearly and quadratically increased 21-d GSH-Px activity in liver (P < 0.05). Supplementing squalene linearly increased pH value at 48 h and linearly decreased lightness at 48 h and 24-h drip loss of breast muscle (P < 0.05). The lightness at 24 h and cooking loss of breast muscle were both linearly and quadratically reduced by squalene (P < 0.05). Dietary squalene administration linearly decreased MDA accumulation but linearly increased GSH level and GSH-Px activity of breast muscle (P < 0.05). Compared with the control group, aforementioned growth performance, antioxidant-related parameters (except 42-d GSH-Px in plasma and breast and hepatic GSH), and meat quality were improved by squalene when its level was 1,000 and 2,000 mg/kg (P < 0.05), with their results being similar between these 2 groups (P > 0.05). It was concluded that squalene administration especially at a level of 1,000 mg/kg can improve growth performance, antioxidant status, and meat quality in broilers, providing insights into its application as a potential feed additive in broiler production.
ISSN:0032-5791