Solution of Inhomogeneous Differential Equations with Polynomial Coefficients in Terms of the Green’s Function, in Nonstandard Analysis

Discussions are presented by Morita and Sato on the problem of obtaining the particular solution of an inhomogeneous differential equation with polynomial coefficients in terms of the Green’s function. In a paper, the problem is treated in distribution theory, and in another paper, the formulation i...

Full description

Bibliographic Details
Main Author: Tohru Morita
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:AppliedMath
Subjects:
Online Access:https://www.mdpi.com/2673-9909/2/3/22
_version_ 1797466036565442560
author Tohru Morita
author_facet Tohru Morita
author_sort Tohru Morita
collection DOAJ
description Discussions are presented by Morita and Sato on the problem of obtaining the particular solution of an inhomogeneous differential equation with polynomial coefficients in terms of the Green’s function. In a paper, the problem is treated in distribution theory, and in another paper, the formulation is given on the basis of nonstandard analysis, where fractional derivative of degree, which is a complex number added by an infinitesimal number, is used. In the present paper, a simple recipe based on nonstandard analysis, which is closely related with distribution theory, is presented, where in place of Heaviside’s step function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> and Dirac’s delta function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> in distribution theory, functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mi>ϵ</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mi mathvariant="sans-serif">Γ</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></mfrac><msup><mi>t</mi><mi>ϵ</mi></msup><mi>H</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mi>ϵ</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mfrac><mi>d</mi><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><msub><mi>H</mi><mi>ϵ</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mi mathvariant="sans-serif">Γ</mi><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow></mfrac><msup><mi>t</mi><mrow><mi>ϵ</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>H</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for a positive infinitesimal number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>, are used. As an example, it is applied to Kummer’s differential equation.
first_indexed 2024-03-09T18:30:17Z
format Article
id doaj.art-6318ad8a3d3345f7bb837a812703a81a
institution Directory Open Access Journal
issn 2673-9909
language English
last_indexed 2024-03-09T18:30:17Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series AppliedMath
spelling doaj.art-6318ad8a3d3345f7bb837a812703a81a2023-11-24T07:33:05ZengMDPI AGAppliedMath2673-99092022-07-012337939210.3390/appliedmath2030022Solution of Inhomogeneous Differential Equations with Polynomial Coefficients in Terms of the Green’s Function, in Nonstandard AnalysisTohru Morita0Graduate School of Information Sciences, Tohoku University, Sendai 980-8577, JapanDiscussions are presented by Morita and Sato on the problem of obtaining the particular solution of an inhomogeneous differential equation with polynomial coefficients in terms of the Green’s function. In a paper, the problem is treated in distribution theory, and in another paper, the formulation is given on the basis of nonstandard analysis, where fractional derivative of degree, which is a complex number added by an infinitesimal number, is used. In the present paper, a simple recipe based on nonstandard analysis, which is closely related with distribution theory, is presented, where in place of Heaviside’s step function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> and Dirac’s delta function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> in distribution theory, functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mi>ϵ</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mi mathvariant="sans-serif">Γ</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></mfrac><msup><mi>t</mi><mi>ϵ</mi></msup><mi>H</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mi>ϵ</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mfrac><mi>d</mi><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><msub><mi>H</mi><mi>ϵ</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mi mathvariant="sans-serif">Γ</mi><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow></mfrac><msup><mi>t</mi><mrow><mi>ϵ</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>H</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for a positive infinitesimal number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>, are used. As an example, it is applied to Kummer’s differential equation.https://www.mdpi.com/2673-9909/2/3/22Green’s functiondifferential equations with polynomial coefficientsnonstandard analysisdistribution theory
spellingShingle Tohru Morita
Solution of Inhomogeneous Differential Equations with Polynomial Coefficients in Terms of the Green’s Function, in Nonstandard Analysis
AppliedMath
Green’s function
differential equations with polynomial coefficients
nonstandard analysis
distribution theory
title Solution of Inhomogeneous Differential Equations with Polynomial Coefficients in Terms of the Green’s Function, in Nonstandard Analysis
title_full Solution of Inhomogeneous Differential Equations with Polynomial Coefficients in Terms of the Green’s Function, in Nonstandard Analysis
title_fullStr Solution of Inhomogeneous Differential Equations with Polynomial Coefficients in Terms of the Green’s Function, in Nonstandard Analysis
title_full_unstemmed Solution of Inhomogeneous Differential Equations with Polynomial Coefficients in Terms of the Green’s Function, in Nonstandard Analysis
title_short Solution of Inhomogeneous Differential Equations with Polynomial Coefficients in Terms of the Green’s Function, in Nonstandard Analysis
title_sort solution of inhomogeneous differential equations with polynomial coefficients in terms of the green s function in nonstandard analysis
topic Green’s function
differential equations with polynomial coefficients
nonstandard analysis
distribution theory
url https://www.mdpi.com/2673-9909/2/3/22
work_keys_str_mv AT tohrumorita solutionofinhomogeneousdifferentialequationswithpolynomialcoefficientsintermsofthegreensfunctioninnonstandardanalysis