Comparison of Rhodotorula sp. and Bacillus megaterium in the removal of cadmium ions from liquid effluents
This study compares the capacity of Rhodotorula sp. and Bacillus megaterium for Cd(II) removal considering the influence of operating parameters (pH, biosorbent dosage, contact time, temperature, initial metal concentration in solution). The highest Cd(II) uptake of 14.2 mg/g by Rhodotorula sp. was...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-02-01
|
Series: | Green Processing and Synthesis |
Subjects: | |
Online Access: | https://doi.org/10.1515/gps-2016-0218 |
Summary: | This study compares the capacity of Rhodotorula sp. and Bacillus megaterium for Cd(II) removal considering the influence of operating parameters (pH, biosorbent dosage, contact time, temperature, initial metal concentration in solution). The highest Cd(II) uptake of 14.2 mg/g by Rhodotorula sp. was exhibited at 30°C, when working at pH 6 and with 5 g/l biosorbent dosage, after 48 h of contact time. In these conditions, a removal efficiency of 85% was obtained. Similar outcomes were obtained for B. megaterium (15.1 mg/g, 90%) at 35°C, pH 4 and 3 g/l biosorbent dosage, considered as the optimum set of parameters, equilibrium being achieved for a contact time of 20 min. The possible interaction mechanisms between the biosorbents and Cd(II) were evaluated through point of zero charge (pHpzc), Fourier transform infrared (FTIR), spectroscopy and scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX). Data were modeled using pseudo-first and pseudo-second order kinetic models and Langmuir and Freundlich isotherms models. Further studies considered a modeling approach based on linear regression with Durbin-Watson statistics, while the accuracy and precision of experiments were evaluated by ANOVA. |
---|---|
ISSN: | 2191-9542 2191-9550 |