Evaluation of <em>Pseudomonas fulva</em> PS9.1 and <em>Bacillus velezensis</em> NWUMFkBS10.5 as Candidate Plant Growth Promoters during Maize-<em>Fusarium</em> Interaction

Based on in vitro assessments, molecular and chemical analysis, <i>Pseudomonas fulva</i> PS9.1 and <i>Bacillus velezensis</i> NWUMFkBS10.5 are candidate biocontrol agents for plant disease management including maize fusariosis, a disease caused by members of the <i>Fusa...

Full description

Bibliographic Details
Main Authors: Adetomiwa A. Adeniji, Olubukola O. Babalola
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/11/3/324
Description
Summary:Based on in vitro assessments, molecular and chemical analysis, <i>Pseudomonas fulva</i> PS9.1 and <i>Bacillus velezensis</i> NWUMFkBS10.5 are candidate biocontrol agents for plant disease management including maize fusariosis, a disease caused by members of the <i>Fusarium</i> species. This in vivo study evaluated the bio-protective potential of the aforementioned rhizobacteria strains on maize against the proliferation of the pathogenic fungus <i>Fusarium graminearum</i> (<i>Fg</i>). The study results show that the bacterized plants were not susceptible to <i>Fg</i> aggression and the antagonists displayed the capability to proliferate in the presence of other likely competing microflora. The screen-house data also suggest that the presence of resident soil microbiota impacted the activity of antagonists (PS9.1 and NWUMFkBS10.5). This variation was recorded in the soil treatments (sterilized and unsterilized soil). In all the experimental periods, bacterized maize plants with or without <i>Fg</i> inoculation significantly (<i>p</i> = 0.05) grew better in unsterilized soil. Besides, during the experimental periods, all the consortia treatments with or without <i>Fg</i> infection regardless of the soil used demonstrated appreciable performance. The result of this study suggests that the microbial agents can actively colonize the surface of their maize plant host, improve plant growth, and suppress the growth of phytopathogens. Considering their overall performance in this screen-house evaluation, <i>P</i>. <i>fulva</i> PS9.1 and <i>B</i>. <i>velezensis</i> NWUMFkBS10.5 have potential for field applications. All safety issues regarding their use under field conditions and risks associated with their extended-release into the environmental will, however, be assessed prior to further bioformulation, field investigation, and scale-up.
ISSN:2223-7747