A refinement of Ramsey theorem(Ramsey定理的一种推广)
Ramsey定理指出:对于任何一个正整数k,存在一个最小的正整数r(k,k),使得对任意一个至少有r(k,k)个顶点的图G,它或者有k个顶点的完全子图Kk,或者有k个顶点是独立集.由此定理易得:设G是顶点数n>r(k,k)的简单图,其边数e>0,且G的所有k阶导出子图的边数相等,那么G是完全图.并给出上述结论的推广:设G是n(n≥4)阶简单图,其边数e>0,对某个给定的自然数k(2≤k≤n-2),若G的所有k阶导出子图的边数相等,则G是完全图....
Main Authors: | , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2002-11-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/zjup/1008-9497.2002.29.6.607-609 |
Summary: | Ramsey定理指出:对于任何一个正整数k,存在一个最小的正整数r(k,k),使得对任意一个至少有r(k,k)个顶点的图G,它或者有k个顶点的完全子图Kk,或者有k个顶点是独立集.由此定理易得:设G是顶点数n>r(k,k)的简单图,其边数e>0,且G的所有k阶导出子图的边数相等,那么G是完全图.并给出上述结论的推广:设G是n(n≥4)阶简单图,其边数e>0,对某个给定的自然数k(2≤k≤n-2),若G的所有k阶导出子图的边数相等,则G是完全图. |
---|---|
ISSN: | 1008-9497 |