A refinement of Ramsey theorem(Ramsey定理的一种推广)
Ramsey定理指出:对于任何一个正整数k,存在一个最小的正整数r(k,k),使得对任意一个至少有r(k,k)个顶点的图G,它或者有k个顶点的完全子图Kk,或者有k个顶点是独立集.由此定理易得:设G是顶点数n>r(k,k)的简单图,其边数e>0,且G的所有k阶导出子图的边数相等,那么G是完全图.并给出上述结论的推广:设G是n(n≥4)阶简单图,其边数e>0,对某个给定的自然数k(2≤k≤n-2),若G的所有k阶导出子图的边数相等,则G是完全图....
Main Authors: | XUKang-hua(许康华), HUANGQing-xue(黄庆学) |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2002-11-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/zjup/1008-9497.2002.29.6.607-609 |
Similar Items
-
k-clique partition of complete k-uniform hypergraphs(完全k一致超图的k团分划)
by: HUANGQing-xue(黄庆学)
Published: (2005-07-01) -
The elementary proof of Bremner theorem(Bremner定理的初等证明)
by: WUWen-quan(吴文权), et al.
Published: (2013-01-01) -
WDM光网络中一种改进的波长转换器配置算法
by: 仲留成, et al.
Published: (2009-01-01) -
WDM网络中一种新型的波长转换器配置算法
by: 刘铁, et al.
Published: (2010-01-01) -
Ramsey sequences of graphs
by: Gary Chartrand, et al.
Published: (2020-10-01)