Quasi 3D Nacelle Design to Simulate Crosswind Flows: Merits and Challenges

This paper studies the computational modelling of the flow separation over the engine nacelle lips under the off-design condition of significant crosswind. A numerical framework is set up to reproduce the general flow characteristics under crosswinds with increasing engine mass flow rate, which incl...

Full description

Bibliographic Details
Main Authors: Alex Yeung, Nagabhushana Rao Vadlamani, Tom Hynes, Sumit Sarvankar
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:International Journal of Turbomachinery, Propulsion and Power
Subjects:
Online Access:https://www.mdpi.com/2504-186X/4/3/25
Description
Summary:This paper studies the computational modelling of the flow separation over the engine nacelle lips under the off-design condition of significant crosswind. A numerical framework is set up to reproduce the general flow characteristics under crosswinds with increasing engine mass flow rate, which include: low-speed separation, attached flow and high speed shock-induced separation. A quasi-3D (Q3D) duct extraction method from the full 3D (F3D) simulations has been developed. Results obtained from the Q3D simulations are shown to largely reproduce the trends observed (isentropic Mach number variations and high-speed separation behaviour) in the 3D intake, substantially reducing the simulation time by a factor of 50. The agreement between the F3D and Q3D simulations is encouraging when the flow either fully attached or with modest levels of separation but degrades when the flow fully detaches. Results are shown to deviate beyond this limit since the captured streamtube shape (and hence the corresponding Q3D duct shape) changes with the mass flow rate. Interestingly, the drooped intake investigated in the current study is prone to earlier separation under crosswinds when compared to an axisymmetric intake. Implications of these results on the industrial nacelle lip design are also discussed.
ISSN:2504-186X