MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI
The present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. Th...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Department of Mathematics FMIPA University of Jember
2022-03-01
|
Series: | Majalah Ilmiah Matematika dan Statistika |
Online Access: | https://jurnal.unej.ac.id/index.php/MIMS/article/view/29337 |
_version_ | 1797838704390176768 |
---|---|
author | Saltina Saltina Novianita Achmad Resmawan Resmawan Agusyarif Rezka Nuha |
author_facet | Saltina Saltina Novianita Achmad Resmawan Resmawan Agusyarif Rezka Nuha |
author_sort | Saltina Saltina |
collection | DOAJ |
description | The present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. The purpose of this study was to construct a mathematical model, analyze the stability of the equilibrium point, and interpret the simulation of the SEIQR mathematical model in the trasnsmission of diphteria. From the constructed model, there were bacis reproduction number () and two equilibrium points, namely disease-free and endemic equilibrium point would be stable if and , respectively. Moreover, a nunerical simulation was carried out to determine the dynamics of the diphteria transmission. The simulation results showed that if the rates of vaccinated propotion and individual are increased, the infaction woud grandually go away from the population. In short, diphteria transmission be prevented by increasing the rate of vaccnation.
Keywords: Basic reproduction number, Diphtheria, Equilibrium point, Mathematical model, Numerical simulation
MSC2020: 37A99, 37A10, 37C10 |
first_indexed | 2024-04-09T15:46:15Z |
format | Article |
id | doaj.art-63573c1b69c34cee8de38c0a10499d16 |
institution | Directory Open Access Journal |
issn | 1411-6669 2722-9866 |
language | English |
last_indexed | 2024-04-09T15:46:15Z |
publishDate | 2022-03-01 |
publisher | Department of Mathematics FMIPA University of Jember |
record_format | Article |
series | Majalah Ilmiah Matematika dan Statistika |
spelling | doaj.art-63573c1b69c34cee8de38c0a10499d162023-04-27T02:26:51ZengDepartment of Mathematics FMIPA University of JemberMajalah Ilmiah Matematika dan Statistika1411-66692722-98662022-03-01221142910.19184/mims.v22i1.2933729337MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERISaltina Saltina0Novianita Achmad1Resmawan Resmawan2Agusyarif Rezka Nuha3Program Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri GorontaloProgram Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri GorontaloProgram Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri GorontaloProgram Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri GorontaloThe present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. The purpose of this study was to construct a mathematical model, analyze the stability of the equilibrium point, and interpret the simulation of the SEIQR mathematical model in the trasnsmission of diphteria. From the constructed model, there were bacis reproduction number () and two equilibrium points, namely disease-free and endemic equilibrium point would be stable if and , respectively. Moreover, a nunerical simulation was carried out to determine the dynamics of the diphteria transmission. The simulation results showed that if the rates of vaccinated propotion and individual are increased, the infaction woud grandually go away from the population. In short, diphteria transmission be prevented by increasing the rate of vaccnation. Keywords: Basic reproduction number, Diphtheria, Equilibrium point, Mathematical model, Numerical simulation MSC2020: 37A99, 37A10, 37C10https://jurnal.unej.ac.id/index.php/MIMS/article/view/29337 |
spellingShingle | Saltina Saltina Novianita Achmad Resmawan Resmawan Agusyarif Rezka Nuha MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI Majalah Ilmiah Matematika dan Statistika |
title | MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI |
title_full | MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI |
title_fullStr | MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI |
title_full_unstemmed | MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI |
title_short | MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI |
title_sort | model matematika tipe seiqr pada penyebaran penyakit difteri |
url | https://jurnal.unej.ac.id/index.php/MIMS/article/view/29337 |
work_keys_str_mv | AT saltinasaltina modelmatematikatipeseiqrpadapenyebaranpenyakitdifteri AT novianitaachmad modelmatematikatipeseiqrpadapenyebaranpenyakitdifteri AT resmawanresmawan modelmatematikatipeseiqrpadapenyebaranpenyakitdifteri AT agusyarifrezkanuha modelmatematikatipeseiqrpadapenyebaranpenyakitdifteri |