MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI

The present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. Th...

Full description

Bibliographic Details
Main Authors: Saltina Saltina, Novianita Achmad, Resmawan Resmawan, Agusyarif Rezka Nuha
Format: Article
Language:English
Published: Department of Mathematics FMIPA University of Jember 2022-03-01
Series:Majalah Ilmiah Matematika dan Statistika
Online Access:https://jurnal.unej.ac.id/index.php/MIMS/article/view/29337
_version_ 1797838704390176768
author Saltina Saltina
Novianita Achmad
Resmawan Resmawan
Agusyarif Rezka Nuha
author_facet Saltina Saltina
Novianita Achmad
Resmawan Resmawan
Agusyarif Rezka Nuha
author_sort Saltina Saltina
collection DOAJ
description The present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. The purpose of this study was to construct a mathematical model, analyze the stability of the equilibrium point, and interpret the simulation of the SEIQR mathematical model in the trasnsmission of diphteria. From the constructed model, there were bacis reproduction number () and two equilibrium points, namely disease-free and endemic equilibrium point would be stable if and , respectively. Moreover, a nunerical simulation was carried out to determine the dynamics of the diphteria transmission. The simulation results showed that if the rates of vaccinated propotion and individual are increased, the infaction woud grandually go away from the population. In short, diphteria transmission be prevented by increasing the rate of vaccnation. Keywords: Basic reproduction number, Diphtheria, Equilibrium point, Mathematical model, Numerical simulation MSC2020: 37A99, 37A10, 37C10
first_indexed 2024-04-09T15:46:15Z
format Article
id doaj.art-63573c1b69c34cee8de38c0a10499d16
institution Directory Open Access Journal
issn 1411-6669
2722-9866
language English
last_indexed 2024-04-09T15:46:15Z
publishDate 2022-03-01
publisher Department of Mathematics FMIPA University of Jember
record_format Article
series Majalah Ilmiah Matematika dan Statistika
spelling doaj.art-63573c1b69c34cee8de38c0a10499d162023-04-27T02:26:51ZengDepartment of Mathematics FMIPA University of JemberMajalah Ilmiah Matematika dan Statistika1411-66692722-98662022-03-01221142910.19184/mims.v22i1.2933729337MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERISaltina Saltina0Novianita Achmad1Resmawan Resmawan2Agusyarif Rezka Nuha3Program Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri GorontaloProgram Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri GorontaloProgram Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri GorontaloProgram Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri GorontaloThe present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. The purpose of this study was to construct a mathematical model, analyze the stability of the equilibrium point, and interpret the simulation of the SEIQR mathematical model in the trasnsmission of diphteria. From the constructed model, there were bacis reproduction number () and two equilibrium points, namely disease-free and endemic equilibrium point would be stable if and , respectively. Moreover, a nunerical simulation was carried out to determine the dynamics of the diphteria transmission. The simulation results showed that if the rates of vaccinated propotion and individual are increased, the infaction woud grandually go away from the population. In short, diphteria transmission be prevented by increasing the rate of vaccnation. Keywords: Basic reproduction number, Diphtheria, Equilibrium point, Mathematical model, Numerical simulation MSC2020: 37A99, 37A10, 37C10https://jurnal.unej.ac.id/index.php/MIMS/article/view/29337
spellingShingle Saltina Saltina
Novianita Achmad
Resmawan Resmawan
Agusyarif Rezka Nuha
MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI
Majalah Ilmiah Matematika dan Statistika
title MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI
title_full MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI
title_fullStr MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI
title_full_unstemmed MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI
title_short MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI
title_sort model matematika tipe seiqr pada penyebaran penyakit difteri
url https://jurnal.unej.ac.id/index.php/MIMS/article/view/29337
work_keys_str_mv AT saltinasaltina modelmatematikatipeseiqrpadapenyebaranpenyakitdifteri
AT novianitaachmad modelmatematikatipeseiqrpadapenyebaranpenyakitdifteri
AT resmawanresmawan modelmatematikatipeseiqrpadapenyebaranpenyakitdifteri
AT agusyarifrezkanuha modelmatematikatipeseiqrpadapenyebaranpenyakitdifteri