Detection and Severity Evaluation of Combined Rail Defects Using Deep Learning
Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in...
Hoofdauteurs: | Jessada Sresakoolchai, Sakdirat Kaewunruen |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
MDPI AG
2021-04-01
|
Reeks: | Vibration |
Onderwerpen: | |
Online toegang: | https://www.mdpi.com/2571-631X/4/2/22 |
Gelijkaardige items
-
Interactive reinforcement learning innovation to reduce carbon emissions in railway infrastructure maintenance
door: Jessada Sresakoolchai, et al.
Gepubliceerd in: (2023-10-01) -
Editorial: Best Practices on Advanced Condition Monitoring of Rail Infrastructure Systems, Volume II
door: Stefano Bruni, et al.
Gepubliceerd in: (2021-09-01) -
Technology Information Management Applied To Rail Transportation System
door: Daniel Dăneci-Pătrău
Gepubliceerd in: (2020-01-01) -
LASER SCATTEROMETRY FOR DETECTION OF SQUAT DEFECTS IN RAILWAY RAILS
door: Piotr Lesiak, et al.
Gepubliceerd in: (2015-03-01) -
Wireless Sensor Networks: Toward Smarter Railway Stations
door: Hamad Alawad, et al.
Gepubliceerd in: (2018-07-01)