Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses

Abstract Optical generation of kilo-tesla scale magnetic fields enables prospective technologies and fundamental studies with unprecedentedly high magnetic field energy density. A question is the optimal configuration of proposed setups, where plenty of physical phenomena accompany the generation an...

Full description

Bibliographic Details
Main Authors: Iu. V. Kochetkov, N. D. Bukharskii, M. Ehret, Y. Abe, K. F. F. Law, V. Ospina-Bohorquez, J. J. Santos, S. Fujioka, G. Schaumann, B. Zielbauer, A. Kuznetsov, Ph. Korneev
Format: Article
Language:English
Published: Nature Portfolio 2022-08-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-17202-2
_version_ 1798042662389940224
author Iu. V. Kochetkov
N. D. Bukharskii
M. Ehret
Y. Abe
K. F. F. Law
V. Ospina-Bohorquez
J. J. Santos
S. Fujioka
G. Schaumann
B. Zielbauer
A. Kuznetsov
Ph. Korneev
author_facet Iu. V. Kochetkov
N. D. Bukharskii
M. Ehret
Y. Abe
K. F. F. Law
V. Ospina-Bohorquez
J. J. Santos
S. Fujioka
G. Schaumann
B. Zielbauer
A. Kuznetsov
Ph. Korneev
author_sort Iu. V. Kochetkov
collection DOAJ
description Abstract Optical generation of kilo-tesla scale magnetic fields enables prospective technologies and fundamental studies with unprecedentedly high magnetic field energy density. A question is the optimal configuration of proposed setups, where plenty of physical phenomena accompany the generation and complicate both theoretical studies and experimental realizations. Short laser drivers seem more suitable in many applications, though the process is tangled by an intrinsic transient nature. In this work, an artificial neural network is engaged for unravelling main features of the magnetic field excited with a picosecond laser pulse. The trained neural network acquires an ability to read the magnetic field values from experimental data, extremely facilitating interpretation of the experimental results. The conclusion is that the short sub-picosecond laser pulse may generate a quasi-stationary magnetic field structure living on a hundred picosecond time scale, when the induced current forms a closed circuit.
first_indexed 2024-04-11T22:38:35Z
format Article
id doaj.art-63912bb5f442405f8af1d53a9389f929
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-04-11T22:38:35Z
publishDate 2022-08-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-63912bb5f442405f8af1d53a9389f9292022-12-22T03:59:06ZengNature PortfolioScientific Reports2045-23222022-08-0112111210.1038/s41598-022-17202-2Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulsesIu. V. Kochetkov0N. D. Bukharskii1M. Ehret2Y. Abe3K. F. F. Law4V. Ospina-Bohorquez5J. J. Santos6S. Fujioka7G. Schaumann8B. Zielbauer9A. Kuznetsov10Ph. Korneev11National Research Nuclear University MEPhINational Research Nuclear University MEPhICentre Lasers Intenses et Applications (CELIA), UMR 5107, Université de Bordeaux - CNRS - CEAInstitute of Laser Engineering, Osaka UniversityInstitute of Laser Engineering, Osaka UniversityUniversidad de SalamancaCentre Lasers Intenses et Applications (CELIA), UMR 5107, Université de Bordeaux - CNRS - CEAInstitute of Laser Engineering, Osaka UniversityInstitut für Kernphysik, Technische Universität DarmstadtPP/PHELIX, GSINational Research Nuclear University MEPhINational Research Nuclear University MEPhIAbstract Optical generation of kilo-tesla scale magnetic fields enables prospective technologies and fundamental studies with unprecedentedly high magnetic field energy density. A question is the optimal configuration of proposed setups, where plenty of physical phenomena accompany the generation and complicate both theoretical studies and experimental realizations. Short laser drivers seem more suitable in many applications, though the process is tangled by an intrinsic transient nature. In this work, an artificial neural network is engaged for unravelling main features of the magnetic field excited with a picosecond laser pulse. The trained neural network acquires an ability to read the magnetic field values from experimental data, extremely facilitating interpretation of the experimental results. The conclusion is that the short sub-picosecond laser pulse may generate a quasi-stationary magnetic field structure living on a hundred picosecond time scale, when the induced current forms a closed circuit.https://doi.org/10.1038/s41598-022-17202-2
spellingShingle Iu. V. Kochetkov
N. D. Bukharskii
M. Ehret
Y. Abe
K. F. F. Law
V. Ospina-Bohorquez
J. J. Santos
S. Fujioka
G. Schaumann
B. Zielbauer
A. Kuznetsov
Ph. Korneev
Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses
Scientific Reports
title Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses
title_full Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses
title_fullStr Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses
title_full_unstemmed Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses
title_short Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses
title_sort neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses
url https://doi.org/10.1038/s41598-022-17202-2
work_keys_str_mv AT iuvkochetkov neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT ndbukharskii neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT mehret neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT yabe neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT kfflaw neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT vospinabohorquez neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT jjsantos neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT sfujioka neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT gschaumann neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT bzielbauer neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT akuznetsov neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses
AT phkorneev neuralnetworkanalysisofquasistationarymagneticfieldsinmicrocoilsdrivenbyshortlaserpulses