Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein

Background Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is...

Full description

Bibliographic Details
Main Authors: Theo Luiz Ferraz de Souza, Sheila Maria Barbosa de Lima, Vanessa L. de Azevedo Braga, David S. Peabody, Davis Fernandes Ferreira, M. Lucia Bianconi, Andre Marco de Oliveira Gomes, Jerson Lima Silva, Andréa Cheble de Oliveira
Format: Article
Language:English
Published: PeerJ Inc. 2016-11-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/2670.pdf
_version_ 1797424981679800320
author Theo Luiz Ferraz de Souza
Sheila Maria Barbosa de Lima
Vanessa L. de Azevedo Braga
David S. Peabody
Davis Fernandes Ferreira
M. Lucia Bianconi
Andre Marco de Oliveira Gomes
Jerson Lima Silva
Andréa Cheble de Oliveira
author_facet Theo Luiz Ferraz de Souza
Sheila Maria Barbosa de Lima
Vanessa L. de Azevedo Braga
David S. Peabody
Davis Fernandes Ferreira
M. Lucia Bianconi
Andre Marco de Oliveira Gomes
Jerson Lima Silva
Andréa Cheble de Oliveira
author_sort Theo Luiz Ferraz de Souza
collection DOAJ
description Background Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. Methods Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. Results The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. Discussion Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.
first_indexed 2024-03-09T08:09:26Z
format Article
id doaj.art-639755ada65b4a379252f7d4f74e72fd
institution Directory Open Access Journal
issn 2167-8359
language English
last_indexed 2024-03-09T08:09:26Z
publishDate 2016-11-01
publisher PeerJ Inc.
record_format Article
series PeerJ
spelling doaj.art-639755ada65b4a379252f7d4f74e72fd2023-12-02T23:31:21ZengPeerJ Inc.PeerJ2167-83592016-11-014e267010.7717/peerj.2670Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core proteinTheo Luiz Ferraz de Souza0Sheila Maria Barbosa de Lima1Vanessa L. de Azevedo Braga2David S. Peabody3Davis Fernandes Ferreira4M. Lucia Bianconi5Andre Marco de Oliveira Gomes6Jerson Lima Silva7Andréa Cheble de Oliveira8Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilBio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, BrazilInstituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilDepartment of Molecular Genetics and Microbiology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, United StatesInstituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilPrograma de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilInstituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilInstituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilInstituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilBackground Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. Methods Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. Results The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. Discussion Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.https://peerj.com/articles/2670.pdfHCV core proteinCapsid assemblyCircular dichroismFluorescence spectroscopyStructural biology
spellingShingle Theo Luiz Ferraz de Souza
Sheila Maria Barbosa de Lima
Vanessa L. de Azevedo Braga
David S. Peabody
Davis Fernandes Ferreira
M. Lucia Bianconi
Andre Marco de Oliveira Gomes
Jerson Lima Silva
Andréa Cheble de Oliveira
Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein
PeerJ
HCV core protein
Capsid assembly
Circular dichroism
Fluorescence spectroscopy
Structural biology
title Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein
title_full Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein
title_fullStr Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein
title_full_unstemmed Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein
title_short Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein
title_sort charge neutralization as the major factor for the assembly of nucleocapsid like particles from c terminal truncated hepatitis c virus core protein
topic HCV core protein
Capsid assembly
Circular dichroism
Fluorescence spectroscopy
Structural biology
url https://peerj.com/articles/2670.pdf
work_keys_str_mv AT theoluizferrazdesouza chargeneutralizationasthemajorfactorfortheassemblyofnucleocapsidlikeparticlesfromcterminaltruncatedhepatitiscviruscoreprotein
AT sheilamariabarbosadelima chargeneutralizationasthemajorfactorfortheassemblyofnucleocapsidlikeparticlesfromcterminaltruncatedhepatitiscviruscoreprotein
AT vanessaldeazevedobraga chargeneutralizationasthemajorfactorfortheassemblyofnucleocapsidlikeparticlesfromcterminaltruncatedhepatitiscviruscoreprotein
AT davidspeabody chargeneutralizationasthemajorfactorfortheassemblyofnucleocapsidlikeparticlesfromcterminaltruncatedhepatitiscviruscoreprotein
AT davisfernandesferreira chargeneutralizationasthemajorfactorfortheassemblyofnucleocapsidlikeparticlesfromcterminaltruncatedhepatitiscviruscoreprotein
AT mluciabianconi chargeneutralizationasthemajorfactorfortheassemblyofnucleocapsidlikeparticlesfromcterminaltruncatedhepatitiscviruscoreprotein
AT andremarcodeoliveiragomes chargeneutralizationasthemajorfactorfortheassemblyofnucleocapsidlikeparticlesfromcterminaltruncatedhepatitiscviruscoreprotein
AT jersonlimasilva chargeneutralizationasthemajorfactorfortheassemblyofnucleocapsidlikeparticlesfromcterminaltruncatedhepatitiscviruscoreprotein
AT andreachebledeoliveira chargeneutralizationasthemajorfactorfortheassemblyofnucleocapsidlikeparticlesfromcterminaltruncatedhepatitiscviruscoreprotein