Gamma radiation sterilization of N95 respirators leads to decreased respirator performance.
In response to personal protective equipment (PPE) shortages in the United States due to the Coronavirus Disease 2019, two models of N95 respirators were evaluated for reuse after gamma radiation sterilization. Gamma sterilization is attractive for PPE reuse because it can sterilize large quantities...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2021-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0248859 |
_version_ | 1819012590629552128 |
---|---|
author | Haedi E DeAngelis Anne M Grillet Martin B Nemer Maryla A Wasiolek Don J Hanson Michael A Omana Andres L Sanchez David W Vehar Paul M Thelen |
author_facet | Haedi E DeAngelis Anne M Grillet Martin B Nemer Maryla A Wasiolek Don J Hanson Michael A Omana Andres L Sanchez David W Vehar Paul M Thelen |
author_sort | Haedi E DeAngelis |
collection | DOAJ |
description | In response to personal protective equipment (PPE) shortages in the United States due to the Coronavirus Disease 2019, two models of N95 respirators were evaluated for reuse after gamma radiation sterilization. Gamma sterilization is attractive for PPE reuse because it can sterilize large quantities of material through hermetically sealed packaging, providing safety and logistic benefits. The Gamma Irradiation Facility at Sandia National Laboratories was used to irradiate N95 filtering facepiece respirators to a sterilization dose of 25 kGy(tissue). Aerosol particle filtration performance testing and electrostatic field measurements were used to determine the efficacy of the respirators after irradiation. Both respirator models exhibited statistically significant decreases in particle filtering efficiencies and electrostatic potential after irradiation. The largest decrease in capture efficiency was 40-50% and peaked near the 200 nm particle size. The key contribution of this effort is correlating the electrostatic potential change of individual filtration layer of the respirator with the decrease filtration efficiency after irradiation. This observation occurred in both variations of N95 respirator that we tested. Electrostatic potential measurement of the filtration layer is a key indicator for predicting filtration efficiency loss. |
first_indexed | 2024-12-21T01:46:28Z |
format | Article |
id | doaj.art-639ee61e40b94755bddb016fa0cd03bd |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-21T01:46:28Z |
publishDate | 2021-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-639ee61e40b94755bddb016fa0cd03bd2022-12-21T19:20:00ZengPublic Library of Science (PLoS)PLoS ONE1932-62032021-01-01164e024885910.1371/journal.pone.0248859Gamma radiation sterilization of N95 respirators leads to decreased respirator performance.Haedi E DeAngelisAnne M GrilletMartin B NemerMaryla A WasiolekDon J HansonMichael A OmanaAndres L SanchezDavid W VeharPaul M ThelenIn response to personal protective equipment (PPE) shortages in the United States due to the Coronavirus Disease 2019, two models of N95 respirators were evaluated for reuse after gamma radiation sterilization. Gamma sterilization is attractive for PPE reuse because it can sterilize large quantities of material through hermetically sealed packaging, providing safety and logistic benefits. The Gamma Irradiation Facility at Sandia National Laboratories was used to irradiate N95 filtering facepiece respirators to a sterilization dose of 25 kGy(tissue). Aerosol particle filtration performance testing and electrostatic field measurements were used to determine the efficacy of the respirators after irradiation. Both respirator models exhibited statistically significant decreases in particle filtering efficiencies and electrostatic potential after irradiation. The largest decrease in capture efficiency was 40-50% and peaked near the 200 nm particle size. The key contribution of this effort is correlating the electrostatic potential change of individual filtration layer of the respirator with the decrease filtration efficiency after irradiation. This observation occurred in both variations of N95 respirator that we tested. Electrostatic potential measurement of the filtration layer is a key indicator for predicting filtration efficiency loss.https://doi.org/10.1371/journal.pone.0248859 |
spellingShingle | Haedi E DeAngelis Anne M Grillet Martin B Nemer Maryla A Wasiolek Don J Hanson Michael A Omana Andres L Sanchez David W Vehar Paul M Thelen Gamma radiation sterilization of N95 respirators leads to decreased respirator performance. PLoS ONE |
title | Gamma radiation sterilization of N95 respirators leads to decreased respirator performance. |
title_full | Gamma radiation sterilization of N95 respirators leads to decreased respirator performance. |
title_fullStr | Gamma radiation sterilization of N95 respirators leads to decreased respirator performance. |
title_full_unstemmed | Gamma radiation sterilization of N95 respirators leads to decreased respirator performance. |
title_short | Gamma radiation sterilization of N95 respirators leads to decreased respirator performance. |
title_sort | gamma radiation sterilization of n95 respirators leads to decreased respirator performance |
url | https://doi.org/10.1371/journal.pone.0248859 |
work_keys_str_mv | AT haediedeangelis gammaradiationsterilizationofn95respiratorsleadstodecreasedrespiratorperformance AT annemgrillet gammaradiationsterilizationofn95respiratorsleadstodecreasedrespiratorperformance AT martinbnemer gammaradiationsterilizationofn95respiratorsleadstodecreasedrespiratorperformance AT marylaawasiolek gammaradiationsterilizationofn95respiratorsleadstodecreasedrespiratorperformance AT donjhanson gammaradiationsterilizationofn95respiratorsleadstodecreasedrespiratorperformance AT michaelaomana gammaradiationsterilizationofn95respiratorsleadstodecreasedrespiratorperformance AT andreslsanchez gammaradiationsterilizationofn95respiratorsleadstodecreasedrespiratorperformance AT davidwvehar gammaradiationsterilizationofn95respiratorsleadstodecreasedrespiratorperformance AT paulmthelen gammaradiationsterilizationofn95respiratorsleadstodecreasedrespiratorperformance |