Exact $L^2$-Distance from the Limit for QuickSort Key Comparisons (Extended Abstract)

Using a recursive approach, we obtain a simple exact expression for the $L^2$-distance from the limit in the classical limit theorem of Régnier (1989) for the number of key comparisons required by $\texttt{QuickSort}$. A previous study by Fill and Janson (2002) using a similar approach found that th...

Full description

Bibliographic Details
Main Authors: Patrick Bindjeme, james Allen fill
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2012-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3003/pdf
Description
Summary:Using a recursive approach, we obtain a simple exact expression for the $L^2$-distance from the limit in the classical limit theorem of Régnier (1989) for the number of key comparisons required by $\texttt{QuickSort}$. A previous study by Fill and Janson (2002) using a similar approach found that the $d_2$-distance is of order between $n^{-1} \log{n}$ and $n^{-1/2}$, and another by Neininger and Ruschendorf (2002) found that the Zolotarev $\zeta _3$-distance is of exact order $n^{-1} \log{n}$. Our expression reveals that the $L^2$-distance is asymptotically equivalent to $(2 n^{-1} \ln{n})^{1/2}$.
ISSN:1365-8050