Developmental transcriptomic patterns can be altered by transgenic overexpression of Uty

Abstract The genetic material encoded on X and Y chromosomes provides the foundation by which biological sex differences are established. Epigenetic regulators expressed on these sex chromosomes, including Kdm6a (Utx), Kdm5c, and Ddx3x have far-reaching impacts on transcriptional control of phenotyp...

Full description

Bibliographic Details
Main Authors: Kylie D. Rock, Lillian M. Folts, Hannah C. Zierden, Ruth Marx-Rattner, Nicolae Adrian Leu, Bridget M. Nugent, Tracy L. Bale
Format: Article
Language:English
Published: Nature Portfolio 2023-11-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-47977-x
Description
Summary:Abstract The genetic material encoded on X and Y chromosomes provides the foundation by which biological sex differences are established. Epigenetic regulators expressed on these sex chromosomes, including Kdm6a (Utx), Kdm5c, and Ddx3x have far-reaching impacts on transcriptional control of phenotypic sex differences. Although the functionality of UTY (Kdm6c, the Y-linked homologue of UTX), has been supported by more recent studies, its role in developmental sex differences is not understood. Here we test the hypothesis that UTY is an important transcriptional regulator during development that could contribute to sex-specific phenotypes and disease risks across the lifespan. We generated a random insertion Uty transgenic mouse (Uty-Tg) to overexpress Uty. By comparing transcriptomic profiles in developmental tissues, placenta and hypothalamus, we assessed potential UTY functional activity, comparing Uty-expressing female mice (XX + Uty) with wild-type male (XY) and female (XX) mice. To determine if Uty expression altered physiological or behavioral outcomes, adult mice were phenotypically examined. Uty expression masculinized female gene expression patterns in both the placenta and hypothalamus. Gene ontology (GO) and gene set enrichment analysis (GSEA) consistently identified pathways including immune and synaptic signaling as biological processes associated with UTY. Interestingly, adult females expressing Uty gained less weight and had a greater glucose tolerance compared to wild-type male and female mice when provided a high-fat diet. Utilizing a Uty-overexpressing transgenic mouse, our results provide novel evidence as to a functional transcriptional role for UTY in developing tissues, and a foundation to build on its prospective capacity to influence sex-specific developmental and health outcomes.
ISSN:2045-2322