Summary: | Climate change manifests itself as a change in the probability of extreme weather events, and it is projected that windstorms will become more frequent and intense in Northern Europe. Additionally, the frequency and length of warm periods with wet, unfrozen soil in winter will rise in this region. These factors will lead to an increased risk of storm damages in forests. Factors affecting trees’ resistance to wind uprooting have been well quantified for some species but not for a common and economically important tree, the silver birch (<i>Betula pendula</i> Roth.). Therefore, this study aimed to assess the root-soil plate characteristics of silver birch on wet and dry mineral soils in hemiboreal forests. The root-soil plate and aboveground parameters were measured for 56 canopy trees uprooted in destructive, static-pulling experiments. The shape of the root-soil plate corresponds to the elliptic paraboloid. A decreasing yet slightly different trend was observed in root depth distribution with increasing distance from the stem in both soils. The main factors determining root-soil plate volume were width, which was notably larger on wet mineral soils, and tree diameter at breast height. Consequently, the root-soil plate volume was significantly larger for trees growing on wet mineral soils than for trees growing on dry soils, indicating a wind adaptation.
|