Survival of Escherichia coli O157:H7 in soils from Jiangsu Province, China.

Escherichia coli O157:H7 (E. coli O157:H7) is recognized as a hazardous microorganism in the environment and for public health. The E. coli O157:H7 survival dynamics were investigated in 12 representative soils from Jiangsu Province, where the largest E. coli O157:H7 infection in China occurred. It...

Full description

Bibliographic Details
Main Authors: Taoxiang Zhang, Haizhen Wang, Laosheng Wu, Jun Lou, Jianjun Wu, Philip C Brookes, Jianming Xu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3846838?pdf=render
Description
Summary:Escherichia coli O157:H7 (E. coli O157:H7) is recognized as a hazardous microorganism in the environment and for public health. The E. coli O157:H7 survival dynamics were investigated in 12 representative soils from Jiangsu Province, where the largest E. coli O157:H7 infection in China occurred. It was observed that E. coli O157:H7 declined rapidly in acidic soils (pH, 4.57 - 5.14) but slowly in neutral soils (pH, 6.51 - 7.39). The survival dynamics were well described by the Weibull model, with the calculated td value (survival time of the culturable E. coli O157:H7 needed to reach the detection limit of 100 CFU g(-1)) from 4.57 days in an acidic soil (pH, 4.57) to 34.34 days in a neutral soil (pH, 6.77). Stepwise multiple regression analysis indicated that soil pH and soil organic carbon favored E. coli O157:H7 survival, while a high initial ratio of Gram-negative bacteria phospholipid fatty acids (PLFAs) to Gram-positive bacteria PLFAs, and high content of exchangeable potassium inhibited E. coli O157:H7 survival. Principal component analysis clearly showed that the survival profiles in soils with high pH were different from those with low pH.
ISSN:1932-6203