Algebraic Structure Graphs over the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub></semantics></math></inline-formula>: Exploring Topological Indices and Entropies Using <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">M</mi></semantics></math></inline-formula>-Polynomials

The field of mathematics that studies the relationship between algebraic structures and graphs is known as algebraic graph theory. It incorporates concepts from graph theory, which examines the characteristics and topology of graphs, with those from abstract algebra, which deals with algebraic struc...

Full description

Bibliographic Details
Main Authors: Amal S. Alali, Shahbaz Ali, Noor Hassan, Ali M. Mahnashi, Yilun Shang, Abdullah Assiry
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/18/3833
_version_ 1797578954937204736
author Amal S. Alali
Shahbaz Ali
Noor Hassan
Ali M. Mahnashi
Yilun Shang
Abdullah Assiry
author_facet Amal S. Alali
Shahbaz Ali
Noor Hassan
Ali M. Mahnashi
Yilun Shang
Abdullah Assiry
author_sort Amal S. Alali
collection DOAJ
description The field of mathematics that studies the relationship between algebraic structures and graphs is known as algebraic graph theory. It incorporates concepts from graph theory, which examines the characteristics and topology of graphs, with those from abstract algebra, which deals with algebraic structures such as groups, rings, and fields. If the vertex set of a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>G</mi><mo>^</mo></mover></semantics></math></inline-formula> is fully made up of the zero divisors of the modular ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub></semantics></math></inline-formula>, the graph is said to be a zero-divisor graph. If the products of two vertices are equal to zero under (mod<i>n</i>), they are regarded as neighbors. Entropy, a notion taken from information theory and used in graph theory, measures the degree of uncertainty or unpredictability associated with a graph or its constituent elements. Entropy measurements may be used to calculate the structural complexity and information complexity of graphs. The first, second and second modified Zagrebs, general and inverse general Randics, third and fifth symmetric divisions, harmonic and inverse sum indices, and forgotten topological indices are a few topological indices that are examined in this article for particular families of zero-divisor graphs. A numerical and graphical comparison of computed topological indices over a proposed structure has been studied. Furthermore, different kinds of entropies, such as the first, second, and third redefined Zagreb, are also investigated for a number of families of zero-divisor graphs.
first_indexed 2024-03-10T22:29:58Z
format Article
id doaj.art-63b1e81e713f4e038101183d6821be7c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T22:29:58Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-63b1e81e713f4e038101183d6821be7c2023-11-19T11:48:15ZengMDPI AGMathematics2227-73902023-09-011118383310.3390/math11183833Algebraic Structure Graphs over the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub></semantics></math></inline-formula>: Exploring Topological Indices and Entropies Using <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">M</mi></semantics></math></inline-formula>-PolynomialsAmal S. Alali0Shahbaz Ali1Noor Hassan2Ali M. Mahnashi3Yilun Shang4Abdullah Assiry5Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi ArabiaDepartment of Mathematics, The Islamia University of Bahawalpur, Rahim Yar Kahn Campus, Rahim Yar Khan 64200, PakistanDepartment of Mathematics, The Islamia University of Bahawalpur, Rahim Yar Kahn Campus, Rahim Yar Khan 64200, PakistanDepartment of Mathematics, College of Science, Jazan University, Jazan 45142, Saudi ArabiaDepartment of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, UKDepartment of Mathematical Sciences, College of Applied Science, Umm Alqura University, Makkah 21955, Saudi ArabiaThe field of mathematics that studies the relationship between algebraic structures and graphs is known as algebraic graph theory. It incorporates concepts from graph theory, which examines the characteristics and topology of graphs, with those from abstract algebra, which deals with algebraic structures such as groups, rings, and fields. If the vertex set of a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>G</mi><mo>^</mo></mover></semantics></math></inline-formula> is fully made up of the zero divisors of the modular ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub></semantics></math></inline-formula>, the graph is said to be a zero-divisor graph. If the products of two vertices are equal to zero under (mod<i>n</i>), they are regarded as neighbors. Entropy, a notion taken from information theory and used in graph theory, measures the degree of uncertainty or unpredictability associated with a graph or its constituent elements. Entropy measurements may be used to calculate the structural complexity and information complexity of graphs. The first, second and second modified Zagrebs, general and inverse general Randics, third and fifth symmetric divisions, harmonic and inverse sum indices, and forgotten topological indices are a few topological indices that are examined in this article for particular families of zero-divisor graphs. A numerical and graphical comparison of computed topological indices over a proposed structure has been studied. Furthermore, different kinds of entropies, such as the first, second, and third redefined Zagreb, are also investigated for a number of families of zero-divisor graphs.https://www.mdpi.com/2227-7390/11/18/3833algebraic graph theoryalgebraic structure graphcommutative ringzero-divisor graphs<named-content content-type="inline"><inline-formula> <mml:math id="mm2000003"> <mml:semantics> <mml:mi mathvariant="double-struck">M</mml:mi> </mml:semantics> </mml:math> </inline-formula></named-content>-polynomialsZagreb group indices
spellingShingle Amal S. Alali
Shahbaz Ali
Noor Hassan
Ali M. Mahnashi
Yilun Shang
Abdullah Assiry
Algebraic Structure Graphs over the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub></semantics></math></inline-formula>: Exploring Topological Indices and Entropies Using <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">M</mi></semantics></math></inline-formula>-Polynomials
Mathematics
algebraic graph theory
algebraic structure graph
commutative ring
zero-divisor graphs
<named-content content-type="inline"><inline-formula> <mml:math id="mm2000003"> <mml:semantics> <mml:mi mathvariant="double-struck">M</mml:mi> </mml:semantics> </mml:math> </inline-formula></named-content>-polynomials
Zagreb group indices
title Algebraic Structure Graphs over the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub></semantics></math></inline-formula>: Exploring Topological Indices and Entropies Using <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">M</mi></semantics></math></inline-formula>-Polynomials
title_full Algebraic Structure Graphs over the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub></semantics></math></inline-formula>: Exploring Topological Indices and Entropies Using <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">M</mi></semantics></math></inline-formula>-Polynomials
title_fullStr Algebraic Structure Graphs over the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub></semantics></math></inline-formula>: Exploring Topological Indices and Entropies Using <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">M</mi></semantics></math></inline-formula>-Polynomials
title_full_unstemmed Algebraic Structure Graphs over the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub></semantics></math></inline-formula>: Exploring Topological Indices and Entropies Using <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">M</mi></semantics></math></inline-formula>-Polynomials
title_short Algebraic Structure Graphs over the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub></semantics></math></inline-formula>: Exploring Topological Indices and Entropies Using <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">M</mi></semantics></math></inline-formula>-Polynomials
title_sort algebraic structure graphs over the commutative ring inline formula math display inline semantics msub mi mathvariant double struck z mi mi m mi msub semantics math inline formula exploring topological indices and entropies using inline formula math display inline semantics mi mathvariant double struck m mi semantics math inline formula polynomials
topic algebraic graph theory
algebraic structure graph
commutative ring
zero-divisor graphs
<named-content content-type="inline"><inline-formula> <mml:math id="mm2000003"> <mml:semantics> <mml:mi mathvariant="double-struck">M</mml:mi> </mml:semantics> </mml:math> </inline-formula></named-content>-polynomials
Zagreb group indices
url https://www.mdpi.com/2227-7390/11/18/3833
work_keys_str_mv AT amalsalali algebraicstructuregraphsoverthecommutativeringinlineformulamathdisplayinlinesemanticsmsubmimathvariantdoublestruckzmimimmimsubsemanticsmathinlineformulaexploringtopologicalindicesandentropiesusinginlineformulamathdisplayinlinesemanticsmimathvariantdoubles
AT shahbazali algebraicstructuregraphsoverthecommutativeringinlineformulamathdisplayinlinesemanticsmsubmimathvariantdoublestruckzmimimmimsubsemanticsmathinlineformulaexploringtopologicalindicesandentropiesusinginlineformulamathdisplayinlinesemanticsmimathvariantdoubles
AT noorhassan algebraicstructuregraphsoverthecommutativeringinlineformulamathdisplayinlinesemanticsmsubmimathvariantdoublestruckzmimimmimsubsemanticsmathinlineformulaexploringtopologicalindicesandentropiesusinginlineformulamathdisplayinlinesemanticsmimathvariantdoubles
AT alimmahnashi algebraicstructuregraphsoverthecommutativeringinlineformulamathdisplayinlinesemanticsmsubmimathvariantdoublestruckzmimimmimsubsemanticsmathinlineformulaexploringtopologicalindicesandentropiesusinginlineformulamathdisplayinlinesemanticsmimathvariantdoubles
AT yilunshang algebraicstructuregraphsoverthecommutativeringinlineformulamathdisplayinlinesemanticsmsubmimathvariantdoublestruckzmimimmimsubsemanticsmathinlineformulaexploringtopologicalindicesandentropiesusinginlineformulamathdisplayinlinesemanticsmimathvariantdoubles
AT abdullahassiry algebraicstructuregraphsoverthecommutativeringinlineformulamathdisplayinlinesemanticsmsubmimathvariantdoublestruckzmimimmimsubsemanticsmathinlineformulaexploringtopologicalindicesandentropiesusinginlineformulamathdisplayinlinesemanticsmimathvariantdoubles