Algebraic Structure Graphs over the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub></semantics></math></inline-formula>: Exploring Topological Indices and Entropies Using <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">M</mi></semantics></math></inline-formula>-Polynomials
The field of mathematics that studies the relationship between algebraic structures and graphs is known as algebraic graph theory. It incorporates concepts from graph theory, which examines the characteristics and topology of graphs, with those from abstract algebra, which deals with algebraic struc...
Main Authors: | Amal S. Alali, Shahbaz Ali, Noor Hassan, Ali M. Mahnashi, Yilun Shang, Abdullah Assiry |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-09-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/18/3833 |
Similar Items
-
<inline-formula><math display="inline"><semantics><mi mathvariant="bold-script">F</mi></semantics></math></inline-formula>-Contractions Endowed with Mann’s Iterative Scheme in Convex <inline-formula><math display="inline"><semantics><msub><mi mathvariant="bold-script">G</mi><mi mathvariant="bold-italic">b</mi></msub></semantics></math></inline-formula>-Metric Spaces
by: Amna Naz, et al.
Published: (2023-09-01) -
Classification of Irreducible <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Modules of a <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Ring Using Matrix Equations
by: Zhichao Chen, et al.
Published: (2022-12-01) -
On Generalizations of the Close-to-Convex Functions Associated with <inline-formula><math display="inline"><semantics><mi mathvariant="fraktur">q</mi></semantics></math></inline-formula>-Srivastava–Attiya Operator
by: Daniel Breaz, et al.
Published: (2023-04-01) -
A collection of seminorms linking the <inline-formula><math display="inline"><semantics><mi mathvariant="bold-script">A</mi></semantics></math></inline-formula>-numerical radius and the operator <inline-formula><math display="inline"><semantics><mi mathvariant="bold-script">A</mi></semantics></math></inline-formula>-seminorm
by: Salma Aljawi, et al.
Published: (2024-04-01) -
The <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-script">T</mi></mrow><mrow><mi mathvariant="bold">e</mi></mrow></msub></mrow></semantics></math></inline-formula> Transform: A High-Resolution Integral Transform and Its Key Properties
by: Eduardo Trutié-Carrero, et al.
Published: (2023-10-01)