Tracking changes of individual cortical pores over 1 year via HR-pQCT in a small cohort of 60-year-old females

Introduction: High-resolution peripheral quantitative computed tomography (HR-pQCT) is a powerful tool that has revolutionized 3D longitudinal assessment of bone microarchitecture. However, cortical porosity, a common characteristic of cortical bone loss, is still often determined by static evaluati...

Full description

Bibliographic Details
Main Authors: Rachel K. Surowiec, Elizabeth A. Swallow, Stuart J. Warden, Matthew R. Allen
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:Bone Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352187222004673
Description
Summary:Introduction: High-resolution peripheral quantitative computed tomography (HR-pQCT) is a powerful tool that has revolutionized 3D longitudinal assessment of bone microarchitecture. However, cortical porosity, a common characteristic of cortical bone loss, is still often determined by static evaluation of overall porosity at one timepoint. Therefore, we sought to 1) describe a technique to evaluate individual cortical pore dynamics in aging females over one year using HR-pQCT imaging and 2) determine whether formation and expansion of pores would exceed contraction and infilling of pores. Methods: HR-pQCT (60.7 μm resolution) images were acquired one year apart at the distal tibia and distal radius in seven female volunteers (60–72 years of age). Baseline and one-year images were registered at each bone site and a custom software was used to quantify dynamic activity of individual cortical pores using the following categories: developed, infilled, expanded, contracted, and static. Results: Over the one-year period, cortical pores actively developed, contracted, expanded, and infilled. More pores expanded and developed vs. infilled or contracted leading to increased pore area in both tibial and radial sites (p = 0.0034 and p = 0.0474, respectively). Closed pores in the tibia, those that were not connected to the endosteal or periosteal surfaces, were the most dynamic of any pores type (open/closed) at either bone site. Conclusion: This study demonstrates an approach to longitudinally track individual cortical pore activity in tibial and radial sites. These data expand conventional parameters for assessing cortical porosity and show increased porosity in one year of aging is caused by newly developed pores and expansion of existing pores.
ISSN:2352-1872