Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems

In the recent literature, some fractional one-point Newton-type methods have been proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper, we introduce a new fractional Newton-type method with order of convergence <inline-formula> <math display=&qu...

Full description

Bibliographic Details
Main Authors: Giro Candelario, Alicia Cordero, Juan R. Torregrosa
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/3/452
_version_ 1828871514717421568
author Giro Candelario
Alicia Cordero
Juan R. Torregrosa
author_facet Giro Candelario
Alicia Cordero
Juan R. Torregrosa
author_sort Giro Candelario
collection DOAJ
description In the recent literature, some fractional one-point Newton-type methods have been proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper, we introduce a new fractional Newton-type method with order of convergence <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and compare it with the existing fractional Newton method with order <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>&#945;</mi> </mrow> </semantics> </math> </inline-formula>. Moreover, we also introduce a multipoint fractional Traub-type method with order <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>&#945;</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and compare its performance with that of its first step. Some numerical tests and analysis of the dependence on the initial estimations are made for each case, including a comparison with classical Newton (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> of the first step of the class) and classical Traub&#8217;s scheme (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> of fractional proposed multipoint method). In this comparison, some cases are found where classical Newton and Traub&#8217;s methods do not converge and the proposed methods do, among other advantages.
first_indexed 2024-12-13T06:32:58Z
format Article
id doaj.art-63cb0eb4ccc24841888d035ec7cd00cf
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-13T06:32:58Z
publishDate 2020-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-63cb0eb4ccc24841888d035ec7cd00cf2022-12-21T23:56:33ZengMDPI AGMathematics2227-73902020-03-018345210.3390/math8030452math8030452Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear ProblemsGiro Candelario0Alicia Cordero1Juan R. Torregrosa2Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo 10602, Dominican RepublicInstitute for Multidisciplinary Mathematics, Universitat Politècnica de Valenència, Camino de Vera s/n, 46022 València, SpainInstitute for Multidisciplinary Mathematics, Universitat Politècnica de Valenència, Camino de Vera s/n, 46022 València, SpainIn the recent literature, some fractional one-point Newton-type methods have been proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper, we introduce a new fractional Newton-type method with order of convergence <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and compare it with the existing fractional Newton method with order <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>&#945;</mi> </mrow> </semantics> </math> </inline-formula>. Moreover, we also introduce a multipoint fractional Traub-type method with order <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>&#945;</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and compare its performance with that of its first step. Some numerical tests and analysis of the dependence on the initial estimations are made for each case, including a comparison with classical Newton (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> of the first step of the class) and classical Traub&#8217;s scheme (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> of fractional proposed multipoint method). In this comparison, some cases are found where classical Newton and Traub&#8217;s methods do not converge and the proposed methods do, among other advantages.https://www.mdpi.com/2227-7390/8/3/452nonlinear equationsfractional derivativesmultistep methodsconvergencestability
spellingShingle Giro Candelario
Alicia Cordero
Juan R. Torregrosa
Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
Mathematics
nonlinear equations
fractional derivatives
multistep methods
convergence
stability
title Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
title_full Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
title_fullStr Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
title_full_unstemmed Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
title_short Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
title_sort multipoint fractional iterative methods with 2 i α i 1 th order of convergence for solving nonlinear problems
topic nonlinear equations
fractional derivatives
multistep methods
convergence
stability
url https://www.mdpi.com/2227-7390/8/3/452
work_keys_str_mv AT girocandelario multipointfractionaliterativemethodswith2iai1thorderofconvergenceforsolvingnonlinearproblems
AT aliciacordero multipointfractionaliterativemethodswith2iai1thorderofconvergenceforsolvingnonlinearproblems
AT juanrtorregrosa multipointfractionaliterativemethodswith2iai1thorderofconvergenceforsolvingnonlinearproblems