Towards metropolitan free-space quantum networks

Abstract Quantum communication has seen rapid progress towards practical large-scale networks, with quantum key distribution (QKD) spearheading this development. While fibre-based systems have been shown to be well suited for metropolitan scales, suitable fibre infrastructure may not always be in pl...

Full description

Bibliographic Details
Main Authors: Andrej Kržič, Sakshi Sharma, Christopher Spiess, Uday Chandrashekara, Sebastian Töpfer, Gregor Sauer, Luis Javier González-Martín del Campo, Teresa Kopf, Stefan Petscharnig, Thomas Grafenauer, Roland Lieger, Bernhard Ömer, Christoph Pacher, René Berlich, Thomas Peschel, Christoph Damm, Stefan Risse, Matthias Goy, Daniel Rieländer, Andreas Tünnermann, Fabian Steinlechner
Format: Article
Language:English
Published: Nature Portfolio 2023-09-01
Series:npj Quantum Information
Online Access:https://doi.org/10.1038/s41534-023-00754-0
Description
Summary:Abstract Quantum communication has seen rapid progress towards practical large-scale networks, with quantum key distribution (QKD) spearheading this development. While fibre-based systems have been shown to be well suited for metropolitan scales, suitable fibre infrastructure may not always be in place. Here, we make the case for an entanglement-based free-space quantum network as a practical and efficient alternative for metropolitan applications. We developed a deployable free-space QKD system and demonstrated its use in realistic scenarios. For a representative 1.7-km free-space link, we showcase its ad hoc deployability and achieve secure key rates of up to 5.7 kbps, with 2.5 kbps in direct noon sunlight. By extrapolating experimental data, we show that kbps key rates are achievable even for 10-km distances and multi-user scenarios. We anticipate that our work will establish free-space networks as a viable solution for metropolitan applications and an indispensable complementary building block in the future global quantum internet.
ISSN:2056-6387