Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi<sub>12</sub> Alloy

This paper explores the potential of thermal storage as an energy storage technology with cost advantages. The study uses numerical simulations to investigate the impact of adding porous material to the HTF side during solidification to improve the heat transfer effect of TES using AlSi<inline-fo...

Full description

Bibliographic Details
Main Authors: Chaomurilige, Geng Qiao, Peng Zhao, Yang Li, Yongliang Li
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/15/5729
_version_ 1797586807019274240
author Chaomurilige
Geng Qiao
Peng Zhao
Yang Li
Yongliang Li
author_facet Chaomurilige
Geng Qiao
Peng Zhao
Yang Li
Yongliang Li
author_sort Chaomurilige
collection DOAJ
description This paper explores the potential of thermal storage as an energy storage technology with cost advantages. The study uses numerical simulations to investigate the impact of adding porous material to the HTF side during solidification to improve the heat transfer effect of TES using AlSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>12</mn></msub></semantics></math></inline-formula> alloy as the phase-change material. The research also examines the effects of adding porous dielectric materials and increasing air velocity on the discharge temperature, discharge power, and discharge time of high-temperature phase-change energy storage systems. The study found that the temperature difference of the PCM (increased), solidification time (reduced more than 85%), the outlet temperature of the air, and heat discharge power of the LHS did not vary significantly across different porous materials (copper foam, nickel foam, and silicon carbide foam) added to the HTF tube. These findings offer important information for the design of high-temperature phase-change energy storage devices and can guide future developments in this field.
first_indexed 2024-03-11T00:28:23Z
format Article
id doaj.art-63cebc084a2542c994541f63cb53aecc
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-11T00:28:23Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-63cebc084a2542c994541f63cb53aecc2023-11-18T22:52:06ZengMDPI AGEnergies1996-10732023-07-011615572910.3390/en16155729Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi<sub>12</sub> AlloyChaomurilige0Geng Qiao1Peng Zhao2Yang Li3Yongliang Li4Global Energy Interconnection Research Institute Europe GmbH, 10623 Berlin, GermanyGlobal Energy Interconnection Research Institute Europe GmbH, 10623 Berlin, GermanyJining Electric Power Supply Company, State Grid Shandong Electric Power Company, Jining 272000, ChinaJining Electric Power Supply Company, State Grid Shandong Electric Power Company, Jining 272000, ChinaBirmingham Center for Energy Storage, University of Birmingham, Birmingham B15 2TT, UKThis paper explores the potential of thermal storage as an energy storage technology with cost advantages. The study uses numerical simulations to investigate the impact of adding porous material to the HTF side during solidification to improve the heat transfer effect of TES using AlSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>12</mn></msub></semantics></math></inline-formula> alloy as the phase-change material. The research also examines the effects of adding porous dielectric materials and increasing air velocity on the discharge temperature, discharge power, and discharge time of high-temperature phase-change energy storage systems. The study found that the temperature difference of the PCM (increased), solidification time (reduced more than 85%), the outlet temperature of the air, and heat discharge power of the LHS did not vary significantly across different porous materials (copper foam, nickel foam, and silicon carbide foam) added to the HTF tube. These findings offer important information for the design of high-temperature phase-change energy storage devices and can guide future developments in this field.https://www.mdpi.com/1996-1073/16/15/5729thermal energy storageCFD simulationAlSi<sub>12</sub> alloyphase-change materialporous media
spellingShingle Chaomurilige
Geng Qiao
Peng Zhao
Yang Li
Yongliang Li
Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi<sub>12</sub> Alloy
Energies
thermal energy storage
CFD simulation
AlSi<sub>12</sub> alloy
phase-change material
porous media
title Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi<sub>12</sub> Alloy
title_full Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi<sub>12</sub> Alloy
title_fullStr Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi<sub>12</sub> Alloy
title_full_unstemmed Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi<sub>12</sub> Alloy
title_short Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi<sub>12</sub> Alloy
title_sort numerical study of a high temperature latent heat thermal energy storage device with alsi sub 12 sub alloy
topic thermal energy storage
CFD simulation
AlSi<sub>12</sub> alloy
phase-change material
porous media
url https://www.mdpi.com/1996-1073/16/15/5729
work_keys_str_mv AT chaomurilige numericalstudyofahightemperaturelatentheatthermalenergystoragedevicewithalsisub12suballoy
AT gengqiao numericalstudyofahightemperaturelatentheatthermalenergystoragedevicewithalsisub12suballoy
AT pengzhao numericalstudyofahightemperaturelatentheatthermalenergystoragedevicewithalsisub12suballoy
AT yangli numericalstudyofahightemperaturelatentheatthermalenergystoragedevicewithalsisub12suballoy
AT yongliangli numericalstudyofahightemperaturelatentheatthermalenergystoragedevicewithalsisub12suballoy