Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

New oscillation criteria are established for the system of non-linear equations $$ u'=g(t)|v|^{\frac{1}{\alpha}}\mathrm{sgn}\,v,\qquad v'=-p(t)|u|^{\alpha}\mathrm{sgn}\,u, $$ where $\alpha>0$, $g:[0,+\infty[{}\rightarrow[0,+\infty[ $, and $p:[0,+\infty[{}\rightarrow \mathbb{R}$ are loc...

Full description

Bibliographic Details
Main Author: Zdenek Oplustil
Format: Article
Language:English
Published: University of Szeged 2016-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4929
Description
Summary:New oscillation criteria are established for the system of non-linear equations $$ u'=g(t)|v|^{\frac{1}{\alpha}}\mathrm{sgn}\,v,\qquad v'=-p(t)|u|^{\alpha}\mathrm{sgn}\,u, $$ where $\alpha>0$, $g:[0,+\infty[{}\rightarrow[0,+\infty[ $, and $p:[0,+\infty[{}\rightarrow \mathbb{R}$ are locally integrable functions. Moreover, we assume that the coefficient $g$ is non-integrable on $[0,+\infty]$. Among others, presented oscillatory criteria generalize well-known results of E. Hille and Z. Nehari and complement analogy of Hartman–Wintner theorem for the considered system.
ISSN:1417-3875