Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

New oscillation criteria are established for the system of non-linear equations $$ u'=g(t)|v|^{\frac{1}{\alpha}}\mathrm{sgn}\,v,\qquad v'=-p(t)|u|^{\alpha}\mathrm{sgn}\,u, $$ where $\alpha>0$, $g:[0,+\infty[{}\rightarrow[0,+\infty[ $, and $p:[0,+\infty[{}\rightarrow \mathbb{R}$ are loc...

Full description

Bibliographic Details
Main Author: Zdenek Oplustil
Format: Article
Language:English
Published: University of Szeged 2016-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4929
_version_ 1797830580754186240
author Zdenek Oplustil
author_facet Zdenek Oplustil
author_sort Zdenek Oplustil
collection DOAJ
description New oscillation criteria are established for the system of non-linear equations $$ u'=g(t)|v|^{\frac{1}{\alpha}}\mathrm{sgn}\,v,\qquad v'=-p(t)|u|^{\alpha}\mathrm{sgn}\,u, $$ where $\alpha>0$, $g:[0,+\infty[{}\rightarrow[0,+\infty[ $, and $p:[0,+\infty[{}\rightarrow \mathbb{R}$ are locally integrable functions. Moreover, we assume that the coefficient $g$ is non-integrable on $[0,+\infty]$. Among others, presented oscillatory criteria generalize well-known results of E. Hille and Z. Nehari and complement analogy of Hartman–Wintner theorem for the considered system.
first_indexed 2024-04-09T13:39:25Z
format Article
id doaj.art-63d8d3405fd24bdb8a39f9295250e9ef
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:39:25Z
publishDate 2016-07-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-63d8d3405fd24bdb8a39f9295250e9ef2023-05-09T07:53:05ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752016-07-0120165211710.14232/ejqtde.2016.1.524929Oscillation criteria for two-dimensional system of non-linear ordinary differential equationsZdenek Oplustil0Brno University of Technology, Brno, Czech RepublicNew oscillation criteria are established for the system of non-linear equations $$ u'=g(t)|v|^{\frac{1}{\alpha}}\mathrm{sgn}\,v,\qquad v'=-p(t)|u|^{\alpha}\mathrm{sgn}\,u, $$ where $\alpha>0$, $g:[0,+\infty[{}\rightarrow[0,+\infty[ $, and $p:[0,+\infty[{}\rightarrow \mathbb{R}$ are locally integrable functions. Moreover, we assume that the coefficient $g$ is non-integrable on $[0,+\infty]$. Among others, presented oscillatory criteria generalize well-known results of E. Hille and Z. Nehari and complement analogy of Hartman–Wintner theorem for the considered system.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4929two dimensional system of non-linear differential equationsoscillatory properties
spellingShingle Zdenek Oplustil
Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
Electronic Journal of Qualitative Theory of Differential Equations
two dimensional system of non-linear differential equations
oscillatory properties
title Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
title_full Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
title_fullStr Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
title_full_unstemmed Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
title_short Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
title_sort oscillation criteria for two dimensional system of non linear ordinary differential equations
topic two dimensional system of non-linear differential equations
oscillatory properties
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4929
work_keys_str_mv AT zdenekoplustil oscillationcriteriafortwodimensionalsystemofnonlinearordinarydifferentialequations