The SN 2023ixf Progenitor in M101. I. Infrared Variability
Observational evidence points to a red supergiant (RSG) progenitor for SN 2023ixf. The progenitor candidate has been detected in archival images at wavelengths (≥0.6 μ m) where RSGs typically emit profusely. This object is distinctly variable in the infrared (IR). We characterize the variability usi...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | The Astrophysical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4357/acef22 |
_version_ | 1827779137999208448 |
---|---|
author | Monika D. Soraisam Tamás Szalai Schuyler D. Van Dyk Jennifer E. Andrews Sundar Srinivasan Sang-Hyun Chun Thomas Matheson Peter Scicluna Diego A. Vasquez-Torres |
author_facet | Monika D. Soraisam Tamás Szalai Schuyler D. Van Dyk Jennifer E. Andrews Sundar Srinivasan Sang-Hyun Chun Thomas Matheson Peter Scicluna Diego A. Vasquez-Torres |
author_sort | Monika D. Soraisam |
collection | DOAJ |
description | Observational evidence points to a red supergiant (RSG) progenitor for SN 2023ixf. The progenitor candidate has been detected in archival images at wavelengths (≥0.6 μ m) where RSGs typically emit profusely. This object is distinctly variable in the infrared (IR). We characterize the variability using pre-explosion mid-IR (3.6 and 4.5 μ m) Spitzer and ground-based near-IR ( JHK _s ) archival data jointly covering 19 yr. The IR light curves exhibit significant variability with rms amplitudes in the range 0.2–0.4 mag, increasing with decreasing wavelength. From a robust period analysis of the more densely sampled Spitzer data, we measure a period of 1091 ± 71 days. We demonstrate using Gaussian process modeling that this periodicity is also present in the near-IR light curves, thus indicating a common physical origin, which is likely pulsational instability. We use a period–luminosity relation for RSGs to derive a value of M _K = −11.58 ± 0.31 mag. Assuming a late M spectral type, this corresponds to $\mathrm{log}(L/{L}_{\odot })=5.27\pm 0.12$ at T _eff = 3200 K and to $\mathrm{log}(L/{L}_{\odot })=5.37\pm 0.12$ at T _eff = 3500 K. This gives an independent estimate of the progenitor’s luminosity, unaffected by uncertainties in extinction and distance. Assuming the progenitor candidate underwent enhanced dust-driven mass loss during the time of these archival observations, and using an empirical period–luminosity–based mass-loss prescription, we obtain a mass-loss rate of around (2–4) × 10 ^−4 M _⊙ yr ^−1 . Comparing the above luminosity with stellar evolution models, we infer an initial mass for the progenitor candidate of 20 ± 4 M _⊙ , making this one of the most massive progenitors for a Type II SN detected to date. |
first_indexed | 2024-03-11T14:46:16Z |
format | Article |
id | doaj.art-63daacfa110043e6b88d515cf153e013 |
institution | Directory Open Access Journal |
issn | 1538-4357 |
language | English |
last_indexed | 2024-03-11T14:46:16Z |
publishDate | 2023-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astrophysical Journal |
spelling | doaj.art-63daacfa110043e6b88d515cf153e0132023-10-30T11:31:52ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-0195726410.3847/1538-4357/acef22The SN 2023ixf Progenitor in M101. I. Infrared VariabilityMonika D. Soraisam0https://orcid.org/0000-0001-6360-992XTamás Szalai1https://orcid.org/0000-0003-4610-1117Schuyler D. Van Dyk2https://orcid.org/0000-0001-9038-9950Jennifer E. Andrews3https://orcid.org/0000-0003-0123-0062Sundar Srinivasan4https://orcid.org/0000-0002-2996-305XSang-Hyun Chun5https://orcid.org/0000-0002-6154-7558Thomas Matheson6https://orcid.org/0000-0001-6685-0479Peter Scicluna7https://orcid.org/0000-0002-1161-3756Diego A. Vasquez-Torres8https://orcid.org/0009-0008-2354-0049Gemini Observatory/NSF's NOIRLab , 670 N. A’ohoku Place, Hilo, HI 96720, USA ; monika.soraisam@noirlab.eduDepartment of Experimental Physics, Institute of Physics, University of Szeged , Dóm tér 9, 6720 Szeged, Hungary; ELKH-SZTE Stellar Astrophysics Research Group , Szegedi út, Kt. 766, 6500 Baja, HungaryCaltech/IPAC , Mailcode 100-22, Pasadena, CA 91125, USAGemini Observatory/NSF's NOIRLab , 670 N. A’ohoku Place, Hilo, HI 96720, USA ; monika.soraisam@noirlab.eduInstituto de Radioastronomía y Astrofísica , UNAM, Antigua Carretera a Pátzcuaro 8701, Ex-Hda. San José de la Huerta, Morelia 58089, Mich., MexicoKorea Astronomy and Space Science Institute , 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of KoreaNSF’s NOIRLab , 950 N. Cherry Ave, Tucson, AZ 85719, USAEuropean Southern Observatory , Alonso de Cordova 3107, Santiago RM, ChileInstituto de Radioastronomía y Astrofísica , UNAM, Antigua Carretera a Pátzcuaro 8701, Ex-Hda. San José de la Huerta, Morelia 58089, Mich., MexicoObservational evidence points to a red supergiant (RSG) progenitor for SN 2023ixf. The progenitor candidate has been detected in archival images at wavelengths (≥0.6 μ m) where RSGs typically emit profusely. This object is distinctly variable in the infrared (IR). We characterize the variability using pre-explosion mid-IR (3.6 and 4.5 μ m) Spitzer and ground-based near-IR ( JHK _s ) archival data jointly covering 19 yr. The IR light curves exhibit significant variability with rms amplitudes in the range 0.2–0.4 mag, increasing with decreasing wavelength. From a robust period analysis of the more densely sampled Spitzer data, we measure a period of 1091 ± 71 days. We demonstrate using Gaussian process modeling that this periodicity is also present in the near-IR light curves, thus indicating a common physical origin, which is likely pulsational instability. We use a period–luminosity relation for RSGs to derive a value of M _K = −11.58 ± 0.31 mag. Assuming a late M spectral type, this corresponds to $\mathrm{log}(L/{L}_{\odot })=5.27\pm 0.12$ at T _eff = 3200 K and to $\mathrm{log}(L/{L}_{\odot })=5.37\pm 0.12$ at T _eff = 3500 K. This gives an independent estimate of the progenitor’s luminosity, unaffected by uncertainties in extinction and distance. Assuming the progenitor candidate underwent enhanced dust-driven mass loss during the time of these archival observations, and using an empirical period–luminosity–based mass-loss prescription, we obtain a mass-loss rate of around (2–4) × 10 ^−4 M _⊙ yr ^−1 . Comparing the above luminosity with stellar evolution models, we infer an initial mass for the progenitor candidate of 20 ± 4 M _⊙ , making this one of the most massive progenitors for a Type II SN detected to date.https://doi.org/10.3847/1538-4357/acef22SupernovaeMassive starsCircumstellar dustVariable stars |
spellingShingle | Monika D. Soraisam Tamás Szalai Schuyler D. Van Dyk Jennifer E. Andrews Sundar Srinivasan Sang-Hyun Chun Thomas Matheson Peter Scicluna Diego A. Vasquez-Torres The SN 2023ixf Progenitor in M101. I. Infrared Variability The Astrophysical Journal Supernovae Massive stars Circumstellar dust Variable stars |
title | The SN 2023ixf Progenitor in M101. I. Infrared Variability |
title_full | The SN 2023ixf Progenitor in M101. I. Infrared Variability |
title_fullStr | The SN 2023ixf Progenitor in M101. I. Infrared Variability |
title_full_unstemmed | The SN 2023ixf Progenitor in M101. I. Infrared Variability |
title_short | The SN 2023ixf Progenitor in M101. I. Infrared Variability |
title_sort | sn 2023ixf progenitor in m101 i infrared variability |
topic | Supernovae Massive stars Circumstellar dust Variable stars |
url | https://doi.org/10.3847/1538-4357/acef22 |
work_keys_str_mv | AT monikadsoraisam thesn2023ixfprogenitorinm101iinfraredvariability AT tamasszalai thesn2023ixfprogenitorinm101iinfraredvariability AT schuylerdvandyk thesn2023ixfprogenitorinm101iinfraredvariability AT jennifereandrews thesn2023ixfprogenitorinm101iinfraredvariability AT sundarsrinivasan thesn2023ixfprogenitorinm101iinfraredvariability AT sanghyunchun thesn2023ixfprogenitorinm101iinfraredvariability AT thomasmatheson thesn2023ixfprogenitorinm101iinfraredvariability AT peterscicluna thesn2023ixfprogenitorinm101iinfraredvariability AT diegoavasqueztorres thesn2023ixfprogenitorinm101iinfraredvariability AT monikadsoraisam sn2023ixfprogenitorinm101iinfraredvariability AT tamasszalai sn2023ixfprogenitorinm101iinfraredvariability AT schuylerdvandyk sn2023ixfprogenitorinm101iinfraredvariability AT jennifereandrews sn2023ixfprogenitorinm101iinfraredvariability AT sundarsrinivasan sn2023ixfprogenitorinm101iinfraredvariability AT sanghyunchun sn2023ixfprogenitorinm101iinfraredvariability AT thomasmatheson sn2023ixfprogenitorinm101iinfraredvariability AT peterscicluna sn2023ixfprogenitorinm101iinfraredvariability AT diegoavasqueztorres sn2023ixfprogenitorinm101iinfraredvariability |