The SN 2023ixf Progenitor in M101. I. Infrared Variability

Observational evidence points to a red supergiant (RSG) progenitor for SN 2023ixf. The progenitor candidate has been detected in archival images at wavelengths (≥0.6 μ m) where RSGs typically emit profusely. This object is distinctly variable in the infrared (IR). We characterize the variability usi...

Full description

Bibliographic Details
Main Authors: Monika D. Soraisam, Tamás Szalai, Schuyler D. Van Dyk, Jennifer E. Andrews, Sundar Srinivasan, Sang-Hyun Chun, Thomas Matheson, Peter Scicluna, Diego A. Vasquez-Torres
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/acef22
_version_ 1827779137999208448
author Monika D. Soraisam
Tamás Szalai
Schuyler D. Van Dyk
Jennifer E. Andrews
Sundar Srinivasan
Sang-Hyun Chun
Thomas Matheson
Peter Scicluna
Diego A. Vasquez-Torres
author_facet Monika D. Soraisam
Tamás Szalai
Schuyler D. Van Dyk
Jennifer E. Andrews
Sundar Srinivasan
Sang-Hyun Chun
Thomas Matheson
Peter Scicluna
Diego A. Vasquez-Torres
author_sort Monika D. Soraisam
collection DOAJ
description Observational evidence points to a red supergiant (RSG) progenitor for SN 2023ixf. The progenitor candidate has been detected in archival images at wavelengths (≥0.6 μ m) where RSGs typically emit profusely. This object is distinctly variable in the infrared (IR). We characterize the variability using pre-explosion mid-IR (3.6 and 4.5 μ m) Spitzer and ground-based near-IR ( JHK _s ) archival data jointly covering 19 yr. The IR light curves exhibit significant variability with rms amplitudes in the range 0.2–0.4 mag, increasing with decreasing wavelength. From a robust period analysis of the more densely sampled Spitzer data, we measure a period of 1091 ± 71 days. We demonstrate using Gaussian process modeling that this periodicity is also present in the near-IR light curves, thus indicating a common physical origin, which is likely pulsational instability. We use a period–luminosity relation for RSGs to derive a value of M _K = −11.58 ± 0.31 mag. Assuming a late M spectral type, this corresponds to $\mathrm{log}(L/{L}_{\odot })=5.27\pm 0.12$ at T _eff = 3200 K and to $\mathrm{log}(L/{L}_{\odot })=5.37\pm 0.12$ at T _eff = 3500 K. This gives an independent estimate of the progenitor’s luminosity, unaffected by uncertainties in extinction and distance. Assuming the progenitor candidate underwent enhanced dust-driven mass loss during the time of these archival observations, and using an empirical period–luminosity–based mass-loss prescription, we obtain a mass-loss rate of around (2–4) × 10 ^−4 M _⊙ yr ^−1 . Comparing the above luminosity with stellar evolution models, we infer an initial mass for the progenitor candidate of 20 ± 4 M _⊙ , making this one of the most massive progenitors for a Type II SN detected to date.
first_indexed 2024-03-11T14:46:16Z
format Article
id doaj.art-63daacfa110043e6b88d515cf153e013
institution Directory Open Access Journal
issn 1538-4357
language English
last_indexed 2024-03-11T14:46:16Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj.art-63daacfa110043e6b88d515cf153e0132023-10-30T11:31:52ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-0195726410.3847/1538-4357/acef22The SN 2023ixf Progenitor in M101. I. Infrared VariabilityMonika D. Soraisam0https://orcid.org/0000-0001-6360-992XTamás Szalai1https://orcid.org/0000-0003-4610-1117Schuyler D. Van Dyk2https://orcid.org/0000-0001-9038-9950Jennifer E. Andrews3https://orcid.org/0000-0003-0123-0062Sundar Srinivasan4https://orcid.org/0000-0002-2996-305XSang-Hyun Chun5https://orcid.org/0000-0002-6154-7558Thomas Matheson6https://orcid.org/0000-0001-6685-0479Peter Scicluna7https://orcid.org/0000-0002-1161-3756Diego A. Vasquez-Torres8https://orcid.org/0009-0008-2354-0049Gemini Observatory/NSF's NOIRLab , 670 N. A’ohoku Place, Hilo, HI 96720, USA ; monika.soraisam@noirlab.eduDepartment of Experimental Physics, Institute of Physics, University of Szeged , Dóm tér 9, 6720 Szeged, Hungary; ELKH-SZTE Stellar Astrophysics Research Group , Szegedi út, Kt. 766, 6500 Baja, HungaryCaltech/IPAC , Mailcode 100-22, Pasadena, CA 91125, USAGemini Observatory/NSF's NOIRLab , 670 N. A’ohoku Place, Hilo, HI 96720, USA ; monika.soraisam@noirlab.eduInstituto de Radioastronomía y Astrofísica , UNAM, Antigua Carretera a Pátzcuaro 8701, Ex-Hda. San José de la Huerta, Morelia 58089, Mich., MexicoKorea Astronomy and Space Science Institute , 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of KoreaNSF’s NOIRLab , 950 N. Cherry Ave, Tucson, AZ 85719, USAEuropean Southern Observatory , Alonso de Cordova 3107, Santiago RM, ChileInstituto de Radioastronomía y Astrofísica , UNAM, Antigua Carretera a Pátzcuaro 8701, Ex-Hda. San José de la Huerta, Morelia 58089, Mich., MexicoObservational evidence points to a red supergiant (RSG) progenitor for SN 2023ixf. The progenitor candidate has been detected in archival images at wavelengths (≥0.6 μ m) where RSGs typically emit profusely. This object is distinctly variable in the infrared (IR). We characterize the variability using pre-explosion mid-IR (3.6 and 4.5 μ m) Spitzer and ground-based near-IR ( JHK _s ) archival data jointly covering 19 yr. The IR light curves exhibit significant variability with rms amplitudes in the range 0.2–0.4 mag, increasing with decreasing wavelength. From a robust period analysis of the more densely sampled Spitzer data, we measure a period of 1091 ± 71 days. We demonstrate using Gaussian process modeling that this periodicity is also present in the near-IR light curves, thus indicating a common physical origin, which is likely pulsational instability. We use a period–luminosity relation for RSGs to derive a value of M _K = −11.58 ± 0.31 mag. Assuming a late M spectral type, this corresponds to $\mathrm{log}(L/{L}_{\odot })=5.27\pm 0.12$ at T _eff = 3200 K and to $\mathrm{log}(L/{L}_{\odot })=5.37\pm 0.12$ at T _eff = 3500 K. This gives an independent estimate of the progenitor’s luminosity, unaffected by uncertainties in extinction and distance. Assuming the progenitor candidate underwent enhanced dust-driven mass loss during the time of these archival observations, and using an empirical period–luminosity–based mass-loss prescription, we obtain a mass-loss rate of around (2–4) × 10 ^−4 M _⊙ yr ^−1 . Comparing the above luminosity with stellar evolution models, we infer an initial mass for the progenitor candidate of 20 ± 4 M _⊙ , making this one of the most massive progenitors for a Type II SN detected to date.https://doi.org/10.3847/1538-4357/acef22SupernovaeMassive starsCircumstellar dustVariable stars
spellingShingle Monika D. Soraisam
Tamás Szalai
Schuyler D. Van Dyk
Jennifer E. Andrews
Sundar Srinivasan
Sang-Hyun Chun
Thomas Matheson
Peter Scicluna
Diego A. Vasquez-Torres
The SN 2023ixf Progenitor in M101. I. Infrared Variability
The Astrophysical Journal
Supernovae
Massive stars
Circumstellar dust
Variable stars
title The SN 2023ixf Progenitor in M101. I. Infrared Variability
title_full The SN 2023ixf Progenitor in M101. I. Infrared Variability
title_fullStr The SN 2023ixf Progenitor in M101. I. Infrared Variability
title_full_unstemmed The SN 2023ixf Progenitor in M101. I. Infrared Variability
title_short The SN 2023ixf Progenitor in M101. I. Infrared Variability
title_sort sn 2023ixf progenitor in m101 i infrared variability
topic Supernovae
Massive stars
Circumstellar dust
Variable stars
url https://doi.org/10.3847/1538-4357/acef22
work_keys_str_mv AT monikadsoraisam thesn2023ixfprogenitorinm101iinfraredvariability
AT tamasszalai thesn2023ixfprogenitorinm101iinfraredvariability
AT schuylerdvandyk thesn2023ixfprogenitorinm101iinfraredvariability
AT jennifereandrews thesn2023ixfprogenitorinm101iinfraredvariability
AT sundarsrinivasan thesn2023ixfprogenitorinm101iinfraredvariability
AT sanghyunchun thesn2023ixfprogenitorinm101iinfraredvariability
AT thomasmatheson thesn2023ixfprogenitorinm101iinfraredvariability
AT peterscicluna thesn2023ixfprogenitorinm101iinfraredvariability
AT diegoavasqueztorres thesn2023ixfprogenitorinm101iinfraredvariability
AT monikadsoraisam sn2023ixfprogenitorinm101iinfraredvariability
AT tamasszalai sn2023ixfprogenitorinm101iinfraredvariability
AT schuylerdvandyk sn2023ixfprogenitorinm101iinfraredvariability
AT jennifereandrews sn2023ixfprogenitorinm101iinfraredvariability
AT sundarsrinivasan sn2023ixfprogenitorinm101iinfraredvariability
AT sanghyunchun sn2023ixfprogenitorinm101iinfraredvariability
AT thomasmatheson sn2023ixfprogenitorinm101iinfraredvariability
AT peterscicluna sn2023ixfprogenitorinm101iinfraredvariability
AT diegoavasqueztorres sn2023ixfprogenitorinm101iinfraredvariability