A Highly Sensitive Multimodal Tactile Sensing Module with Planar Structure for Dexterous Manipulation of Robots

Herein, a multimodal tactile sensing module that can improve the dexterous manipulation capabilities of robots with parallel grippers is reported. The tactile sensor consists of a 4 × 4 matrix 3‐axis force sensor array (with spacings of 2 mm) and a single‐temperature sensor. The tactile sensor uses...

Full description

Bibliographic Details
Main Authors: Bo-Gyu Bok, Jin-Seok Jang, Min-Seok Kim
Format: Article
Language:English
Published: Wiley 2023-06-01
Series:Advanced Intelligent Systems
Subjects:
Online Access:https://doi.org/10.1002/aisy.202200381
Description
Summary:Herein, a multimodal tactile sensing module that can improve the dexterous manipulation capabilities of robots with parallel grippers is reported. The tactile sensor consists of a 4 × 4 matrix 3‐axis force sensor array (with spacings of 2 mm) and a single‐temperature sensor. The tactile sensor uses inorganic silicon and gold as materials for the detection of strain and temperature and a polymer‐based elastomer to encapsulate the sensing layer. The sensing module is equipped with a readout circuitry for signal processing. Within the measurable force range (≈1.5 N) of the sensor cell, a prototype module exhibits a repeatability error within 2%, a hysteresis error within 3%, and a resolution as small as 10 mN. Furthermore, each sensor cell independently measures 3‐axis forces with a cross‐talk error of approximately 3%. The temperature sensor exhibits linear output properties in the approximate range of 5–75 °C. Experiments are performed by mounting the module on a parallel gripper to grasp a paper cup and a reflex hammer toy. According to the experimental results, the sensor can accurately detect the state of contact with an object by analyzing three tactile modalities (i.e., 3‐axis force distribution, vibration, and temperature).
ISSN:2640-4567