A Temperature-Insensitive Cladding-Etched Fiber Bragg Grating Using a Liquid Mixture with a Negative Thermo-Optic Coefficient

To compensate for the temperature dependency of a standard FBG, a cladding-etched FBG immersed with a liquid mixture having a negative thermo-optic coefficient is presented, and its characteristics are investigated. The Bragg wavelength of the cladding-etched FBG is shifted counter to the direction...

Full description

Bibliographic Details
Main Authors: Jonghun Lee, Cherl-Hee Lee, Kwang Taek Kim, In Soo Kim
Format: Article
Language:English
Published: MDPI AG 2012-06-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/12/6/7886
Description
Summary:To compensate for the temperature dependency of a standard FBG, a cladding-etched FBG immersed with a liquid mixture having a negative thermo-optic coefficient is presented, and its characteristics are investigated. The Bragg wavelength of the cladding-etched FBG is shifted counter to the direction of the Bragg wavelength shift of a conventional FBG according to the mixing ratio of glycerin to water; thus, the temperature-dependent Bragg wavelength shift was almost compensated by using a liquid mixture of water (50%) and glycerin (50%) having the negative thermo-optic coefficient of −5 × 10<sup>−4</sup> °C<sup>−1</sup>.
ISSN:1424-8220