Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals
<p>The single field-of-view (SFOV) sounder atmospheric product (SiFSAP) retrieval algorithm has been developed to address the need to retrieve high-spatial-resolution atmospheric data products from hyper-spectral sounders and ensure the radiometric consistency between the retrieved properties...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-10-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/16/4807/2023/amt-16-4807-2023.pdf |
_version_ | 1797652528281681920 |
---|---|
author | W. Wu X. Liu L. Lei X. Xiong Q. Yang Q. Yue D. K. Zhou A. M. Larar |
author_facet | W. Wu X. Liu L. Lei X. Xiong Q. Yang Q. Yue D. K. Zhou A. M. Larar |
author_sort | W. Wu |
collection | DOAJ |
description | <p>The single field-of-view (SFOV) sounder atmospheric product (SiFSAP) retrieval algorithm has been developed to address the need to retrieve high-spatial-resolution atmospheric data products from hyper-spectral sounders and ensure the radiometric consistency between the retrieved properties and measured spectral radiances. It is based on an integrated optimal-estimation inversion scheme that processes data from the satellite-based synergistic microwave (MW) and infrared (IR) spectral measurements from advanced sounders. The retrieval system utilizes the principal component radiative transfer model (PCRTM), which performs radiative transfer calculations monochromatically and includes accurate cloud-scattering simulations. SiFSAP includes temperature, water vapor, surface skin temperature and emissivity, cloud height and microphysical properties, and concentrations of essential trace gases for each SFOV at a native instrument spatial resolution. Error estimations are provided based on a rigorous analysis for uncertainty propagation from the top-of-atmosphere (TOA) spectral radiances to the retrieved geophysical properties. As a comparison, the spatial resolution for the traditional hyper-spectral sounder retrieval products is much coarser than the native resolution of the instruments due to the common use of the “cloud-clearing” technique to compensate for the lack of cloud-scattering simulation in the forward model. The degraded spatial resolution in traditional cloud-clearing sounder retrieval products limits their applications for capturing meteorological or climate signals at finer spatial scales. Moreover, a rigorous uncertainty propagation estimation needed for long-term climate trend studies cannot be given due to the lack of direct radiative transfer relationships between the observed TOA radiances and the retrieved geophysical properties. With the advantages of the higher spatial resolution; the simultaneous retrieval of atmospheric, cloud, and surface properties using all available spectral information; and the establishment of “radiance closure” in the sounder spectral measurements, the SiFSAP provides additional information needed for various weather and climate studies and applications using sounding observations. This paper gives an overview of the SiFSAP retrieval algorithm and assessment of SiFSAP atmospheric temperature, water vapor, clouds, and surface products derived from the Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) data.</p> |
first_indexed | 2024-03-11T16:31:11Z |
format | Article |
id | doaj.art-640324efef8840ff9a4f13f93eb4fad8 |
institution | Directory Open Access Journal |
issn | 1867-1381 1867-8548 |
language | English |
last_indexed | 2024-03-11T16:31:11Z |
publishDate | 2023-10-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj.art-640324efef8840ff9a4f13f93eb4fad82023-10-24T06:30:08ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482023-10-01164807483210.5194/amt-16-4807-2023Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievalsW. Wu0X. Liu1L. Lei2X. Xiong3Q. Yang4Q. Yue5D. K. Zhou6A. M. Larar7NASA Langley Research Center, Hampton, VA 23682, USANASA Langley Research Center, Hampton, VA 23682, USAScience Systems and Applications, Inc., Hampton, VA 23666, USANASA Langley Research Center, Hampton, VA 23682, USAScience Systems and Applications, Inc., Hampton, VA 23666, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USANASA Langley Research Center, Hampton, VA 23682, USANASA Langley Research Center, Hampton, VA 23682, USA<p>The single field-of-view (SFOV) sounder atmospheric product (SiFSAP) retrieval algorithm has been developed to address the need to retrieve high-spatial-resolution atmospheric data products from hyper-spectral sounders and ensure the radiometric consistency between the retrieved properties and measured spectral radiances. It is based on an integrated optimal-estimation inversion scheme that processes data from the satellite-based synergistic microwave (MW) and infrared (IR) spectral measurements from advanced sounders. The retrieval system utilizes the principal component radiative transfer model (PCRTM), which performs radiative transfer calculations monochromatically and includes accurate cloud-scattering simulations. SiFSAP includes temperature, water vapor, surface skin temperature and emissivity, cloud height and microphysical properties, and concentrations of essential trace gases for each SFOV at a native instrument spatial resolution. Error estimations are provided based on a rigorous analysis for uncertainty propagation from the top-of-atmosphere (TOA) spectral radiances to the retrieved geophysical properties. As a comparison, the spatial resolution for the traditional hyper-spectral sounder retrieval products is much coarser than the native resolution of the instruments due to the common use of the “cloud-clearing” technique to compensate for the lack of cloud-scattering simulation in the forward model. The degraded spatial resolution in traditional cloud-clearing sounder retrieval products limits their applications for capturing meteorological or climate signals at finer spatial scales. Moreover, a rigorous uncertainty propagation estimation needed for long-term climate trend studies cannot be given due to the lack of direct radiative transfer relationships between the observed TOA radiances and the retrieved geophysical properties. With the advantages of the higher spatial resolution; the simultaneous retrieval of atmospheric, cloud, and surface properties using all available spectral information; and the establishment of “radiance closure” in the sounder spectral measurements, the SiFSAP provides additional information needed for various weather and climate studies and applications using sounding observations. This paper gives an overview of the SiFSAP retrieval algorithm and assessment of SiFSAP atmospheric temperature, water vapor, clouds, and surface products derived from the Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) data.</p>https://amt.copernicus.org/articles/16/4807/2023/amt-16-4807-2023.pdf |
spellingShingle | W. Wu X. Liu L. Lei X. Xiong Q. Yang Q. Yue D. K. Zhou A. M. Larar Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals Atmospheric Measurement Techniques |
title | Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals |
title_full | Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals |
title_fullStr | Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals |
title_full_unstemmed | Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals |
title_short | Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals |
title_sort | single field of view sounder atmospheric product retrieval algorithm establishing radiometric consistency for hyper spectral sounder retrievals |
url | https://amt.copernicus.org/articles/16/4807/2023/amt-16-4807-2023.pdf |
work_keys_str_mv | AT wwu singlefieldofviewsounderatmosphericproductretrievalalgorithmestablishingradiometricconsistencyforhyperspectralsounderretrievals AT xliu singlefieldofviewsounderatmosphericproductretrievalalgorithmestablishingradiometricconsistencyforhyperspectralsounderretrievals AT llei singlefieldofviewsounderatmosphericproductretrievalalgorithmestablishingradiometricconsistencyforhyperspectralsounderretrievals AT xxiong singlefieldofviewsounderatmosphericproductretrievalalgorithmestablishingradiometricconsistencyforhyperspectralsounderretrievals AT qyang singlefieldofviewsounderatmosphericproductretrievalalgorithmestablishingradiometricconsistencyforhyperspectralsounderretrievals AT qyue singlefieldofviewsounderatmosphericproductretrievalalgorithmestablishingradiometricconsistencyforhyperspectralsounderretrievals AT dkzhou singlefieldofviewsounderatmosphericproductretrievalalgorithmestablishingradiometricconsistencyforhyperspectralsounderretrievals AT amlarar singlefieldofviewsounderatmosphericproductretrievalalgorithmestablishingradiometricconsistencyforhyperspectralsounderretrievals |