Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetism
Fe3GaTe2 is a promising van der Waals material for future spintronic applications because of its intrinsic above-room-temperature ferromagnetism. Herein, high quality Fe3GaTe2 single crystals were successfully grown by the chemical vapor transport method. Its magnetic critical behavior in the vicini...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2024-01-01
|
Series: | APL Materials |
Online Access: | http://dx.doi.org/10.1063/5.0183071 |
_version_ | 1797331897349570560 |
---|---|
author | Hanin Algaidi Chenhui Zhang Yinchang Ma Chen Liu Aitian Chen Dongxing Zheng Xixiang Zhang |
author_facet | Hanin Algaidi Chenhui Zhang Yinchang Ma Chen Liu Aitian Chen Dongxing Zheng Xixiang Zhang |
author_sort | Hanin Algaidi |
collection | DOAJ |
description | Fe3GaTe2 is a promising van der Waals material for future spintronic applications because of its intrinsic above-room-temperature ferromagnetism. Herein, high quality Fe3GaTe2 single crystals were successfully grown by the chemical vapor transport method. Its magnetic critical behavior in the vicinity of paramagnetic to ferromagnetic phase transition region was systematically investigated. The critical exponents β = 0.350(1) and γ = 1.385(5) were obtained by using the Kouvel–Fisher method, and δ = 4.92(1) was obtained by a critical isotherm analysis at critical temperature TC = 358 K, which is consistent with the Widom scaling relation δ = 1 + γ/β. The critical exponents determined using different methods are self-consistent and obey the scaling equations predicted by the scaling theory. The renormalization group theory analysis based on the extracted critical exponents further reveals that the magnetic interaction in Fe3GaTe2 is of the 3D Heisenberg type with long-range magnetic coupling. |
first_indexed | 2024-03-08T07:41:56Z |
format | Article |
id | doaj.art-640919c675e4483c9a003d54da7f2b81 |
institution | Directory Open Access Journal |
issn | 2166-532X |
language | English |
last_indexed | 2024-03-08T07:41:56Z |
publishDate | 2024-01-01 |
publisher | AIP Publishing LLC |
record_format | Article |
series | APL Materials |
spelling | doaj.art-640919c675e4483c9a003d54da7f2b812024-02-02T16:57:37ZengAIP Publishing LLCAPL Materials2166-532X2024-01-01121011124011124-810.1063/5.0183071Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetismHanin Algaidi0Chenhui Zhang1Yinchang Ma2Chen Liu3Aitian Chen4Dongxing Zheng5Xixiang Zhang6Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi ArabiaPhysical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi ArabiaPhysical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi ArabiaPhysical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi ArabiaPhysical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi ArabiaPhysical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi ArabiaPhysical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi ArabiaFe3GaTe2 is a promising van der Waals material for future spintronic applications because of its intrinsic above-room-temperature ferromagnetism. Herein, high quality Fe3GaTe2 single crystals were successfully grown by the chemical vapor transport method. Its magnetic critical behavior in the vicinity of paramagnetic to ferromagnetic phase transition region was systematically investigated. The critical exponents β = 0.350(1) and γ = 1.385(5) were obtained by using the Kouvel–Fisher method, and δ = 4.92(1) was obtained by a critical isotherm analysis at critical temperature TC = 358 K, which is consistent with the Widom scaling relation δ = 1 + γ/β. The critical exponents determined using different methods are self-consistent and obey the scaling equations predicted by the scaling theory. The renormalization group theory analysis based on the extracted critical exponents further reveals that the magnetic interaction in Fe3GaTe2 is of the 3D Heisenberg type with long-range magnetic coupling.http://dx.doi.org/10.1063/5.0183071 |
spellingShingle | Hanin Algaidi Chenhui Zhang Yinchang Ma Chen Liu Aitian Chen Dongxing Zheng Xixiang Zhang Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetism APL Materials |
title | Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetism |
title_full | Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetism |
title_fullStr | Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetism |
title_full_unstemmed | Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetism |
title_short | Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetism |
title_sort | magnetic critical behavior of van der waals fe3gate2 with above room temperature ferromagnetism |
url | http://dx.doi.org/10.1063/5.0183071 |
work_keys_str_mv | AT haninalgaidi magneticcriticalbehaviorofvanderwaalsfe3gate2withaboveroomtemperatureferromagnetism AT chenhuizhang magneticcriticalbehaviorofvanderwaalsfe3gate2withaboveroomtemperatureferromagnetism AT yinchangma magneticcriticalbehaviorofvanderwaalsfe3gate2withaboveroomtemperatureferromagnetism AT chenliu magneticcriticalbehaviorofvanderwaalsfe3gate2withaboveroomtemperatureferromagnetism AT aitianchen magneticcriticalbehaviorofvanderwaalsfe3gate2withaboveroomtemperatureferromagnetism AT dongxingzheng magneticcriticalbehaviorofvanderwaalsfe3gate2withaboveroomtemperatureferromagnetism AT xixiangzhang magneticcriticalbehaviorofvanderwaalsfe3gate2withaboveroomtemperatureferromagnetism |