The role of microRNA-23b-5p in regulating brown adipogenesis and thermogenic program

Enhanced brown adipose tissue (BAT) mass and activity have been demonstrated to promote the expenditure of excess stored energy and reduce prevalence of obesity. Cold is known as a potent stimulator of BAT and activates BAT primarily through the β3- adrenergic-cAMP signaling. Here, we performed RNA-...

Full description

Bibliographic Details
Main Authors: Lianghui You, Yan Wang, Yao Gao, Xingyun Wang, Xianwei Cui, Yanyan Zhang, Lingxia Pang, Chenbo Ji, Xirong Guo, Xia Chi
Format: Article
Language:English
Published: Bioscientifica 2020-06-01
Series:Endocrine Connections
Subjects:
Online Access:https://ec.bioscientifica.com/view/journals/ec/9/5/EC-20-0124.xml
Description
Summary:Enhanced brown adipose tissue (BAT) mass and activity have been demonstrated to promote the expenditure of excess stored energy and reduce prevalence of obesity. Cold is known as a potent stimulator of BAT and activates BAT primarily through the β3- adrenergic-cAMP signaling. Here, we performed RNA-sequencing to identify differential miRNAs in mouse BAT upon cold exposure and a total of 20 miRNAs were validated. With the treatment of CL-316,243 (CL) and forskolin (Fsk) in mouse a nd human differentiated brown adipocyte cells in vitro, miR-23b-5p, miR-133a-3p, miR-135-5p, miR-491-5p, and miR-150-3p expression decreased and miR-455-5p expression increased. Among these deferentially expressed miRNAs, miR-23b-5p expression was differentially regulated in activated and aging mouse BAT and negatively correlated with Ucp1 expression. Overexpression of miR-23b-5p in the precursor cells from BAT re vealed no significant effects on lipid accumulation, but diminished mitochondrial func tion and decreased expression of BAT specific markers. Though luciferase reporter a ssays did not confirm the positive association of miR-23b-5p with the 3′UTRs of the predicted target Ern1, miR-23b-5p overexpression may affect brown adipocyte thermogenic capacity mainly through regulating genes expression involving in lipolysis and fatty acid β-oxidation pathways. Our results suggest that miRNAs are involved in cold-mediated BAT thermogenic activation and further acknowledged miR-23b-5p as a negative regulator in controlling thermogenic programs, further providing potential molecular therapeutic targets to increase surplus energy and treat obesity.
ISSN:2049-3614
2049-3614