Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient <i>Rhizobium leguminosarum</i>

(1) Background: Many factors can impact bacterial mechanical properties, which play an important role in survival and adaptation. This study characterizes the ultrastructural phenotype, elastic and viscoelastic properties of <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> 38...

Full description

Bibliographic Details
Main Authors: Dong Jun, Ubong Idem, Tanya E. S. Dahms
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/8/9/1421
_version_ 1797553583721283584
author Dong Jun
Ubong Idem
Tanya E. S. Dahms
author_facet Dong Jun
Ubong Idem
Tanya E. S. Dahms
author_sort Dong Jun
collection DOAJ
description (1) Background: Many factors can impact bacterial mechanical properties, which play an important role in survival and adaptation. This study characterizes the ultrastructural phenotype, elastic and viscoelastic properties of <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> 3841 and the C-terminal protease A (<i>ctpA</i>) null mutant strain predicted to have a compromised cell envelope; (2) Methods: To probe the cell envelope, we used transmission electron microscopy (TEM), high performance liquid chromatography (HPLC), mass spectrometry (MS), atomic force microscopy (AFM) force spectroscopy, and time-dependent AFM creep deformation; (3) Results: TEM images show a compromised and often detached outer membrane for the <i>ctpA</i> mutant. Muropeptide characterization by HPLC and MS showed an increase in peptidoglycan dimeric peptide (GlcNAc-MurNAc-Ala-Glu-meso-DAP-Ala-meso-DAP-Glu-Ala-MurNAc-GlcNAc) for the <i>ctpA</i> mutant, indicative of increased crosslinking. The <i>ctpA</i> mutant had significantly larger spring constants than wild type under all hydrated conditions, attributable to more highly crosslinked peptidoglycan. Time-dependent AFM creep deformation for both the wild type and <i>ctpA</i> mutant was indicative of a viscoelastic cell envelope, with best fit to the four-element Burgers model and generating values for viscoelastic parameters k<sub>1</sub>, k<sub>2</sub>, η<sub>1</sub>, and η<sub>2</sub>; (4) Conclusions: The viscoelastic response of the <i>ctpA</i> mutant is consistent with both its compromised outer membrane (TEM) and fortified peptidoglycan layer (HPLC/MS).
first_indexed 2024-03-10T16:18:33Z
format Article
id doaj.art-640d7d24e80e4327a34e1e9661714d52
institution Directory Open Access Journal
issn 2076-2607
language English
last_indexed 2024-03-10T16:18:33Z
publishDate 2020-09-01
publisher MDPI AG
record_format Article
series Microorganisms
spelling doaj.art-640d7d24e80e4327a34e1e9661714d522023-11-20T13:52:34ZengMDPI AGMicroorganisms2076-26072020-09-0189142110.3390/microorganisms8091421Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient <i>Rhizobium leguminosarum</i>Dong Jun0Ubong Idem1Tanya E. S. Dahms2Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, CanadaDepartment of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, CanadaDepartment of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada(1) Background: Many factors can impact bacterial mechanical properties, which play an important role in survival and adaptation. This study characterizes the ultrastructural phenotype, elastic and viscoelastic properties of <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> 3841 and the C-terminal protease A (<i>ctpA</i>) null mutant strain predicted to have a compromised cell envelope; (2) Methods: To probe the cell envelope, we used transmission electron microscopy (TEM), high performance liquid chromatography (HPLC), mass spectrometry (MS), atomic force microscopy (AFM) force spectroscopy, and time-dependent AFM creep deformation; (3) Results: TEM images show a compromised and often detached outer membrane for the <i>ctpA</i> mutant. Muropeptide characterization by HPLC and MS showed an increase in peptidoglycan dimeric peptide (GlcNAc-MurNAc-Ala-Glu-meso-DAP-Ala-meso-DAP-Glu-Ala-MurNAc-GlcNAc) for the <i>ctpA</i> mutant, indicative of increased crosslinking. The <i>ctpA</i> mutant had significantly larger spring constants than wild type under all hydrated conditions, attributable to more highly crosslinked peptidoglycan. Time-dependent AFM creep deformation for both the wild type and <i>ctpA</i> mutant was indicative of a viscoelastic cell envelope, with best fit to the four-element Burgers model and generating values for viscoelastic parameters k<sub>1</sub>, k<sub>2</sub>, η<sub>1</sub>, and η<sub>2</sub>; (4) Conclusions: The viscoelastic response of the <i>ctpA</i> mutant is consistent with both its compromised outer membrane (TEM) and fortified peptidoglycan layer (HPLC/MS).https://www.mdpi.com/2076-2607/8/9/1421atomic force microscopycell envelopeC-terminal proteaseforce spectroscopy<i>Rhizobium leguminosarum</i>viscoelasticity
spellingShingle Dong Jun
Ubong Idem
Tanya E. S. Dahms
Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient <i>Rhizobium leguminosarum</i>
Microorganisms
atomic force microscopy
cell envelope
C-terminal protease
force spectroscopy
<i>Rhizobium leguminosarum</i>
viscoelasticity
title Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient <i>Rhizobium leguminosarum</i>
title_full Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient <i>Rhizobium leguminosarum</i>
title_fullStr Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient <i>Rhizobium leguminosarum</i>
title_full_unstemmed Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient <i>Rhizobium leguminosarum</i>
title_short Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient <i>Rhizobium leguminosarum</i>
title_sort altered envelope structure and nanomechanical properties of a c terminal protease a deficient i rhizobium leguminosarum i
topic atomic force microscopy
cell envelope
C-terminal protease
force spectroscopy
<i>Rhizobium leguminosarum</i>
viscoelasticity
url https://www.mdpi.com/2076-2607/8/9/1421
work_keys_str_mv AT dongjun alteredenvelopestructureandnanomechanicalpropertiesofacterminalproteaseadeficientirhizobiumleguminosarumi
AT ubongidem alteredenvelopestructureandnanomechanicalpropertiesofacterminalproteaseadeficientirhizobiumleguminosarumi
AT tanyaesdahms alteredenvelopestructureandnanomechanicalpropertiesofacterminalproteaseadeficientirhizobiumleguminosarumi