Separate Fractional (<i>p</i>,<i>q</i>)-Integrodifference Equations via Nonlocal Fractional (<i>p</i>,<i>q</i>)-Integral Boundary Conditions

In this paper, we study a boundary value problem involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>...

Full description

Bibliographic Details
Main Authors: Thongchai Dumrongpokaphan, Sotiris K. Ntouyas, Thanin Sitthiwirattham
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/11/2212
Description
Summary:In this paper, we study a boundary value problem involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integrodifference equations, supplemented with nonlocal fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integral boundary conditions with respect to asymmetric operators. First, we convert the given nonlinear problem into a fixed-point problem, by considering a linear variant of the problem at hand. Once the fixed-point operator is available, existence and uniqueness results are established using the classical Banach’s and Schaefer’s fixed-point theorems. The application of the main results is demonstrated by presenting numerical examples. Moreover, we study some properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integral that are used in our study.
ISSN:2073-8994