A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors
Micro-opto-electro-mechanical (MOEMS) micromirrors are an enabling technology for mobile image projectors (pico-projectors). Low size and low power are the crucial pico-projector constraints. In this work, we present a fast method for the optimization of a silicon single-axis electromagnetic torsion...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-12-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/9/1/2 |
_version_ | 1831729413658509312 |
---|---|
author | Francesco Pieri Alessandro Cilea |
author_facet | Francesco Pieri Alessandro Cilea |
author_sort | Francesco Pieri |
collection | DOAJ |
description | Micro-opto-electro-mechanical (MOEMS) micromirrors are an enabling technology for mobile image projectors (pico-projectors). Low size and low power are the crucial pico-projector constraints. In this work, we present a fast method for the optimization of a silicon single-axis electromagnetic torsional micromirror. In this device, external permanent magnets provide the required magnetic field, and the actuation torque is generated on a rectangular multi-loop coil microfabricated on the mirror plate. Multiple constraints link the required current through the coil, its area occupancy, the operating frequency, mirror suspension length, and magnets size. With only rather general assumptions about the magnetic field distribution and mechanical behavior, we show that a fully analytical description of the mirror electromagnetic and mechanical behavior is possible, so that the optimization targets (the assembly size, comprising the mirror and magnets, and the actuation current) can be expressed as closed functions of the design parameters. Standard multiobjective optimization algorithms can then be used for extremely fast evaluation of the trade-offs among the various optimization targets and exploration of the Pareto frontier. The error caused by model assumptions are estimated by Finite Element Method (FEM) simulations to be below a few percent points from the exact solution. |
first_indexed | 2024-12-21T07:09:49Z |
format | Article |
id | doaj.art-64597a5087ad4895a1c19990b1cfeab9 |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-12-21T07:09:49Z |
publishDate | 2017-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-64597a5087ad4895a1c19990b1cfeab92022-12-21T19:12:00ZengMDPI AGMicromachines2072-666X2017-12-0191210.3390/mi9010002mi9010002A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS MicromirrorsFrancesco Pieri0Alessandro Cilea1Department of Information Engineering, Università di Pisa, 56122 Pisa, ItalyDepartment of Information Engineering, Università di Pisa, 56122 Pisa, ItalyMicro-opto-electro-mechanical (MOEMS) micromirrors are an enabling technology for mobile image projectors (pico-projectors). Low size and low power are the crucial pico-projector constraints. In this work, we present a fast method for the optimization of a silicon single-axis electromagnetic torsional micromirror. In this device, external permanent magnets provide the required magnetic field, and the actuation torque is generated on a rectangular multi-loop coil microfabricated on the mirror plate. Multiple constraints link the required current through the coil, its area occupancy, the operating frequency, mirror suspension length, and magnets size. With only rather general assumptions about the magnetic field distribution and mechanical behavior, we show that a fully analytical description of the mirror electromagnetic and mechanical behavior is possible, so that the optimization targets (the assembly size, comprising the mirror and magnets, and the actuation current) can be expressed as closed functions of the design parameters. Standard multiobjective optimization algorithms can then be used for extremely fast evaluation of the trade-offs among the various optimization targets and exploration of the Pareto frontier. The error caused by model assumptions are estimated by Finite Element Method (FEM) simulations to be below a few percent points from the exact solution.https://www.mdpi.com/2072-666X/9/1/2Micro-electro-mechanical systems (MEMS)MOEMSmicromirrorsmultiobjective optimizationpico-projectorsmagnetic actuation |
spellingShingle | Francesco Pieri Alessandro Cilea A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors Micromachines Micro-electro-mechanical systems (MEMS) MOEMS micromirrors multiobjective optimization pico-projectors magnetic actuation |
title | A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors |
title_full | A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors |
title_fullStr | A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors |
title_full_unstemmed | A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors |
title_short | A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors |
title_sort | fast multiobjective optimization strategy for single axis electromagnetic moems micromirrors |
topic | Micro-electro-mechanical systems (MEMS) MOEMS micromirrors multiobjective optimization pico-projectors magnetic actuation |
url | https://www.mdpi.com/2072-666X/9/1/2 |
work_keys_str_mv | AT francescopieri afastmultiobjectiveoptimizationstrategyforsingleaxiselectromagneticmoemsmicromirrors AT alessandrocilea afastmultiobjectiveoptimizationstrategyforsingleaxiselectromagneticmoemsmicromirrors AT francescopieri fastmultiobjectiveoptimizationstrategyforsingleaxiselectromagneticmoemsmicromirrors AT alessandrocilea fastmultiobjectiveoptimizationstrategyforsingleaxiselectromagneticmoemsmicromirrors |