Summary: | Yi-Chen Yeh1, Lun-Wei Chang2, Hsin-Yuan Miao3, Szu-Po Chen1, Jhu-Tzang Lue11Department of Physics and 2Institute of Electronics Engineering, National Tsing Hua University, Hsinchu, Taiwan; 3Department of Electrical Engineering, Tunghai University, Taichung, TaiwanAbstract: A homemade microwave plasma-enhanced chemical vapor deposition method was used to grow a multiwalled carbon nanotube between two nickel catalyst electrodes. To investigate the transport properties and electron scattering mechanism of this interconnection (of approximately fixed length and fixed diameter), we carried out a model analysis of temperature dependence of resistivity. To explain the abnormal behavior of the negative temperature coefficient of resistivity in our experimental results, we then employed theories, such as hopping conductivity theory and variable range hopping conductivity theory, to describe resistivity in the high- and low-temperature ranges, respectively. Further, the grain boundary scattering model is also provided to fit the entire measured curve of temperature dependence of resistivity.Keywords: multiwalled carbon nanotube, resistivity, hopping conductivity, temperature dependence
|