Interpretative optimization of the isocratic ion chromatographic separation of anions

Interpretive retention modeling was utilized to optimize the isocratic ion chromatographic (IC) separation of the nine anions (formate, fluoride, chloride, nitrite, bromide, nitrate, phosphate, sulfate, oxalate). The carbonate-bicarbonate eluent was used and separation was done on a Dionex...

Full description

Bibliographic Details
Main Authors: Todorović Žaklina N., Rajaković Ljubinka V., Onjia Antonije E.
Format: Article
Language:English
Published: Serbian Chemical Society 2016-01-01
Series:Journal of the Serbian Chemical Society
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0352-5139/2016/0352-51391600022T.pdf
Description
Summary:Interpretive retention modeling was utilized to optimize the isocratic ion chromatographic (IC) separation of the nine anions (formate, fluoride, chloride, nitrite, bromide, nitrate, phosphate, sulfate, oxalate). The carbonate-bicarbonate eluent was used and separation was done on a Dionex AS14 ion-exchange column. The influence of combined effects of two mobile phase factors, the total eluent concentration (2 - 6 mM) and the carbonate/bicaronate ratio from 1:9 to 9:1 (which corespondent to pH range 9.35 - 11.27), on the IC separation was studied. The multiple species analyte/eluent model that takes into account ion-exchange equilibria of the eluent and sample anions was used. In order to estimate the parameters in the model, a non-linear fitting of the retention data, obtained at two-factor three-level experimental design, was applied. To find the optimal conditions in the experimental design, the normalized resolution product as a chromatographic objective function was employed. This criterion includes both the individual peak resolution and the total analysis time. A good agreement between experimental and simulated chromatograms was obtained. [Projekat Ministarstva nauke Republike Srbije, br. III43009]
ISSN:0352-5139
1820-7421