Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction

Highlights The S-vacancies result in the change of d-band electronic state of Mo. An internal quantum efficiency of 94.01% at 380 nm for photocatalytic CO2 reduction reaction (CO2RR). The Mo–S bridging bonds optimize adsorption energies and accelerate CO2RR kinetics.

Bibliographic Details
Main Authors: Kangwang Wang, Zhuofeng Hu, Peifeng Yu, Alina M. Balu, Kuan Li, Longfu Li, Lingyong Zeng, Chao Zhang, Rafael Luque, Kai Yan, Huixia Luo
Format: Article
Language:English
Published: SpringerOpen 2023-11-01
Series:Nano-Micro Letters
Subjects:
Online Access:https://doi.org/10.1007/s40820-023-01221-3
_version_ 1827068215013933056
author Kangwang Wang
Zhuofeng Hu
Peifeng Yu
Alina M. Balu
Kuan Li
Longfu Li
Lingyong Zeng
Chao Zhang
Rafael Luque
Kai Yan
Huixia Luo
author_facet Kangwang Wang
Zhuofeng Hu
Peifeng Yu
Alina M. Balu
Kuan Li
Longfu Li
Lingyong Zeng
Chao Zhang
Rafael Luque
Kai Yan
Huixia Luo
author_sort Kangwang Wang
collection DOAJ
description Highlights The S-vacancies result in the change of d-band electronic state of Mo. An internal quantum efficiency of 94.01% at 380 nm for photocatalytic CO2 reduction reaction (CO2RR). The Mo–S bridging bonds optimize adsorption energies and accelerate CO2RR kinetics.
first_indexed 2024-03-11T11:02:11Z
format Article
id doaj.art-6477895a266f49759ff6990df39daacb
institution Directory Open Access Journal
issn 2311-6706
2150-5551
language English
last_indexed 2025-03-19T23:47:10Z
publishDate 2023-11-01
publisher SpringerOpen
record_format Article
series Nano-Micro Letters
spelling doaj.art-6477895a266f49759ff6990df39daacb2024-10-13T11:32:19ZengSpringerOpenNano-Micro Letters2311-67062150-55512023-11-0116111710.1007/s40820-023-01221-3Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 ReductionKangwang Wang0Zhuofeng Hu1Peifeng Yu2Alina M. Balu3Kuan Li4Longfu Li5Lingyong Zeng6Chao Zhang7Rafael Luque8Kai Yan9Huixia Luo10School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite and Functional Materials, Sun Yat-Sen UniversitySchool of Environmental Science and Engineering, Sun Yat-Sen UniversitySchool of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite and Functional Materials, Sun Yat-Sen UniversityDepartamento de Química Orgánica, Universidad de CórdobaSchool of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite and Functional Materials, Sun Yat-Sen UniversitySchool of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite and Functional Materials, Sun Yat-Sen UniversitySchool of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite and Functional Materials, Sun Yat-Sen UniversitySchool of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite and Functional Materials, Sun Yat-Sen UniversityCenter for Refining and Advanced Chemicals, King Fahd University of Petroleum and MineralsSchool of Environmental Science and Engineering, Sun Yat-Sen UniversitySchool of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite and Functional Materials, Sun Yat-Sen UniversityHighlights The S-vacancies result in the change of d-band electronic state of Mo. An internal quantum efficiency of 94.01% at 380 nm for photocatalytic CO2 reduction reaction (CO2RR). The Mo–S bridging bonds optimize adsorption energies and accelerate CO2RR kinetics.https://doi.org/10.1007/s40820-023-01221-3Quantum efficiencyElectronic structureSteric interactionBridging sitesCO2 reduction
spellingShingle Kangwang Wang
Zhuofeng Hu
Peifeng Yu
Alina M. Balu
Kuan Li
Longfu Li
Lingyong Zeng
Chao Zhang
Rafael Luque
Kai Yan
Huixia Luo
Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction
Nano-Micro Letters
Quantum efficiency
Electronic structure
Steric interaction
Bridging sites
CO2 reduction
title Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction
title_full Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction
title_fullStr Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction
title_full_unstemmed Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction
title_short Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction
title_sort understanding bridging sites and accelerating quantum efficiency for photocatalytic co2 reduction
topic Quantum efficiency
Electronic structure
Steric interaction
Bridging sites
CO2 reduction
url https://doi.org/10.1007/s40820-023-01221-3
work_keys_str_mv AT kangwangwang understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction
AT zhuofenghu understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction
AT peifengyu understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction
AT alinambalu understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction
AT kuanli understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction
AT longfuli understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction
AT lingyongzeng understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction
AT chaozhang understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction
AT rafaelluque understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction
AT kaiyan understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction
AT huixialuo understandingbridgingsitesandacceleratingquantumefficiencyforphotocatalyticco2reduction