A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion Model

This note tackles the equivalence problem between the fractional and integer order diffusion models. Unlike existing approaches, the existence of a unique integral transformation mapping the solution of the integer order model to a solution of the fractional order model of <inline-formula><...

Full description

Bibliographic Details
Main Authors: Claudia A. Pérez-Pinacho, Cristina Verde
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/5/753
_version_ 1797474439040860160
author Claudia A. Pérez-Pinacho
Cristina Verde
author_facet Claudia A. Pérez-Pinacho
Cristina Verde
author_sort Claudia A. Pérez-Pinacho
collection DOAJ
description This note tackles the equivalence problem between the fractional and integer order diffusion models. Unlike existing approaches, the existence of a unique integral transformation mapping the solution of the integer order model to a solution of the fractional order model of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> is proven. Moreover, the corresponding inverse integral transformation is formally established to guarantee the equivalence and well-posedness of the solutions of these models. Finally, as an example, the solution of a fractional order diffusion model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>, obtained through the solution of its integer order counterpart and the proposed transformation, is compared with the solution derived by using the Fourier transform.
first_indexed 2024-03-09T20:31:05Z
format Article
id doaj.art-647b06328af8443a852daf46b10d589d
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T20:31:05Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-647b06328af8443a852daf46b10d589d2023-11-23T23:23:07ZengMDPI AGMathematics2227-73902022-02-0110575310.3390/math10050753A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion ModelClaudia A. Pérez-Pinacho0Cristina Verde1Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, MexicoInstituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, MexicoThis note tackles the equivalence problem between the fractional and integer order diffusion models. Unlike existing approaches, the existence of a unique integral transformation mapping the solution of the integer order model to a solution of the fractional order model of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> is proven. Moreover, the corresponding inverse integral transformation is formally established to guarantee the equivalence and well-posedness of the solutions of these models. Finally, as an example, the solution of a fractional order diffusion model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>, obtained through the solution of its integer order counterpart and the proposed transformation, is compared with the solution derived by using the Fourier transform.https://www.mdpi.com/2227-7390/10/5/753integer order diffusion modelfractional calculusintegral transformationfractional order diffusion model
spellingShingle Claudia A. Pérez-Pinacho
Cristina Verde
A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion Model
Mathematics
integer order diffusion model
fractional calculus
integral transformation
fractional order diffusion model
title A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion Model
title_full A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion Model
title_fullStr A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion Model
title_full_unstemmed A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion Model
title_short A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion Model
title_sort note on an integral transformation for the equivalence between a fractional and integer order diffusion model
topic integer order diffusion model
fractional calculus
integral transformation
fractional order diffusion model
url https://www.mdpi.com/2227-7390/10/5/753
work_keys_str_mv AT claudiaaperezpinacho anoteonanintegraltransformationfortheequivalencebetweenafractionalandintegerorderdiffusionmodel
AT cristinaverde anoteonanintegraltransformationfortheequivalencebetweenafractionalandintegerorderdiffusionmodel
AT claudiaaperezpinacho noteonanintegraltransformationfortheequivalencebetweenafractionalandintegerorderdiffusionmodel
AT cristinaverde noteonanintegraltransformationfortheequivalencebetweenafractionalandintegerorderdiffusionmodel