The Classification of All Singular Nonsymmetric Macdonald Polynomials

The affine Hecke algebra of type <i>A</i> has two parameters <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfenced close=")" open="("><mi>q</mi><mo>,</mo&g...

Full description

Bibliographic Details
Main Author: Charles F. Dunkl
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/5/208
_version_ 1797501575616266240
author Charles F. Dunkl
author_facet Charles F. Dunkl
author_sort Charles F. Dunkl
collection DOAJ
description The affine Hecke algebra of type <i>A</i> has two parameters <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfenced close=")" open="("><mi>q</mi><mo>,</mo><mi>t</mi></mfenced></semantics></math></inline-formula> and acts on polynomials in <i>N</i> variables. There are two important pairwise commuting sets of elements in the algebra: the Cherednik operators and the Jucys–Murphy elements whose simultaneous eigenfunctions are the nonsymmetric Macdonald polynomials, and basis vectors of irreducible modules of the Hecke algebra, respectively. For certain parameter values, it is possible for special polynomials to be simultaneous eigenfunctions with equal corresponding eigenvalues of both sets of operators. These are called singular polynomials. The possible parameter values are of the form <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>q</mi><mi>m</mi></msup><mo>=</mo><msup><mi>t</mi><mrow><mo>−</mo><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula> with <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mi>N</mi><mo>.</mo></mrow></semantics></math></inline-formula> For a fixed parameter, the singular polynomials span an irreducible module of the Hecke algebra. Colmenarejo and the author (SIGMA 16 (2020), 010) showed that there exist singular polynomials for each of these parameter values, they coincide with specializations of nonsymmetric Macdonald polynomials, and the isotype (a partition of <i>N</i>) of the Hecke algebra module is <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfenced close=")" open="("><mi>d</mi><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>r</mi></mfenced></semantics></math></inline-formula> for some <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>. In the present paper, it is shown that there are no other singular polynomials.
first_indexed 2024-03-10T03:20:25Z
format Article
id doaj.art-64813066182245689480bf677e1de6cd
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T03:20:25Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-64813066182245689480bf677e1de6cd2023-11-23T10:04:05ZengMDPI AGAxioms2075-16802022-04-0111520810.3390/axioms11050208The Classification of All Singular Nonsymmetric Macdonald PolynomialsCharles F. Dunkl0Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USAThe affine Hecke algebra of type <i>A</i> has two parameters <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfenced close=")" open="("><mi>q</mi><mo>,</mo><mi>t</mi></mfenced></semantics></math></inline-formula> and acts on polynomials in <i>N</i> variables. There are two important pairwise commuting sets of elements in the algebra: the Cherednik operators and the Jucys–Murphy elements whose simultaneous eigenfunctions are the nonsymmetric Macdonald polynomials, and basis vectors of irreducible modules of the Hecke algebra, respectively. For certain parameter values, it is possible for special polynomials to be simultaneous eigenfunctions with equal corresponding eigenvalues of both sets of operators. These are called singular polynomials. The possible parameter values are of the form <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>q</mi><mi>m</mi></msup><mo>=</mo><msup><mi>t</mi><mrow><mo>−</mo><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula> with <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mi>N</mi><mo>.</mo></mrow></semantics></math></inline-formula> For a fixed parameter, the singular polynomials span an irreducible module of the Hecke algebra. Colmenarejo and the author (SIGMA 16 (2020), 010) showed that there exist singular polynomials for each of these parameter values, they coincide with specializations of nonsymmetric Macdonald polynomials, and the isotype (a partition of <i>N</i>) of the Hecke algebra module is <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfenced close=")" open="("><mi>d</mi><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>r</mi></mfenced></semantics></math></inline-formula> for some <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>. In the present paper, it is shown that there are no other singular polynomials.https://www.mdpi.com/2075-1680/11/5/208nonsymmetric Macdonald polynomialsthe affine Hecke algebra of type <i>A</i>Young tableauxJucys–Murphy operators
spellingShingle Charles F. Dunkl
The Classification of All Singular Nonsymmetric Macdonald Polynomials
Axioms
nonsymmetric Macdonald polynomials
the affine Hecke algebra of type <i>A</i>
Young tableaux
Jucys–Murphy operators
title The Classification of All Singular Nonsymmetric Macdonald Polynomials
title_full The Classification of All Singular Nonsymmetric Macdonald Polynomials
title_fullStr The Classification of All Singular Nonsymmetric Macdonald Polynomials
title_full_unstemmed The Classification of All Singular Nonsymmetric Macdonald Polynomials
title_short The Classification of All Singular Nonsymmetric Macdonald Polynomials
title_sort classification of all singular nonsymmetric macdonald polynomials
topic nonsymmetric Macdonald polynomials
the affine Hecke algebra of type <i>A</i>
Young tableaux
Jucys–Murphy operators
url https://www.mdpi.com/2075-1680/11/5/208
work_keys_str_mv AT charlesfdunkl theclassificationofallsingularnonsymmetricmacdonaldpolynomials
AT charlesfdunkl classificationofallsingularnonsymmetricmacdonaldpolynomials